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ABSTRACT
The semantic SLAM (simultaneous localization and mapping) sys-
tem is an indispensable module for autonomous indoor parking.
Monocular and binocular visual cameras constitute the basic con-
figuration to build such a system. Features used in existing SLAM
systems are often dynamically movable, blurred and repetitively
textured. By contrast, semantic features on the ground are more
stable and consistent in the indoor parking environment. Due to
their inabilities to perceive salient features on the ground, exist-
ing SLAM systems are prone to tracking loss during navigation.
Therefore, a surround-view camera system capturing images from a
top-down viewpoint is necessarily called for. To this end, this paper
proposes a novel tightly-coupled semantic SLAM system by inte-
grating V isual, Inertial, and Surround-view sensors, VISSLAM for
short, for autonomous indoor parking. In VISSLAM, apart from low-
level visual features and IMU (inertial measurement unit) motion
data, parking-slots in surround-view images are also detected and
geometrically associated, forming semantic constraints. Specifically,
each parking-slot can impose a surround-view constraint that can
be split into an adjacency term and a registration term. The former
pre-defines the position of each individual parking-slot subject to
whether it has an adjacent neighbor. The latter further constrains
by registering between each observed parking-slot and its position
in the world coordinate system. To validate the effectiveness and ef-
ficiency of VISSLAM, a large-scale dataset composed of synchronous
multi-sensor data collected from typical indoor parking sites is es-
tablished, which is the first of its kind. The collected dataset has been
made publicly available at https://cslinzhang.github.io/VISSLAM/.
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1 INTRODUCTION
In the autonomous driving industry, self-parking is a problem that
needs to be solved urgently to achieve the “last-mile” navigation
[22]. It enables the autonomous vehicle to successfully maneuver in
an unknown indoor parking environment.When an autonomous ve-
hicle navigates in such an indoor environment, an important thing
is to sense and understand its surroundings. In order to achieve
this goal, a SLAM system [5] that simultaneously estimates the
vehicle motion as well as constructs the map of its surrounding
environment is necessarily called for.

Monocular and binocular visual cameras constitute the basic
sensor configuration to build such a SLAM system. Often, visual
cameras and IMU can collaborate further to establish a VI-SLAM
(visual-inertial SLAM) system to prevent tracking loss during nav-
igation. The visual camera operates stably in texture-rich scenes,
whereas the IMU estimates motion of the vehicle by directly mea-
suring its angular velocity and linear acceleration, thereby comple-
menting the camera in an environment of severe jitters or missing
textures. However, VI-SLAM systems usually depend on low-level
visual features, such as points and lines, or directly utilize the in-
tensity of pixels. Both low-level visual features and image pixels
suffer from instability and inconsistency during tracking in indoor
parking environment. For example, when the vehicle is making a
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turn, it may face a low-textured wall, leading to tracking loss. Be-
sides, these SLAM systems fail to understand semantic information
around the vehicle.

In order to help self-driving cars understand their surroundings,
a semantic SLAM system needs to incorporate semantic informa-
tion (e.g., cars or people) to localize itself and to construct the map
[2–4, 21, 25, 26]. Unfortunately, for indoor parking, commonly stud-
ied semantic objects, such as cars and people, are generally dynamic,
which serve little to or even compromise the localization and map-
ping accuracy. By contrast, for this specific application scenario,
the parking-slot painted on the ground is a kind of stable, salient,
and easy-to-detect semantic feature. At present, unfortunately, few
eminent semantic SLAM systems have made use of parking-slot
information effectively.

Taking aforementioned analysis into considerations, in this pa-
per, we attempt to build a semantic SLAM system, namely VISSLAM
(a SLAM system integrating visual, inertial, and surround-view
sensors), specially for the task of autonomous indoor parking. Our
contributions can be summarized as follows:

(1) Specially designed for navigation in the indoor parking site,
VISSLAM is the first tightly-coupled semantic SLAM system
that fully explores parking-slots detected in surround-views
in its optimization framework. Surround-view images are
synthesized online from bird’s-eye views generated from
a surround-view camera system, comprising four fisheye
cameras. Since VISSLAM can construct maps with semantic
parking-slot information, it can be naturally integrated into
a high-level self-parking system.

(2) In order to improve the localization accuracy and to construct
the semantic map, in VISSLAM parking-slots in surround-
view images are leveraged for optimization in which they
are modeled as an adjacency term subject to the existence of
adjacent neighbors and a registration term constraining by
registering between the observed parking-slots and their po-
sitions in the world coordinate system. Experiments demon-
strate that the semantic constraints induced by parking-slots
can significantly improve the performance of VISSLAM.

(3) At present, there is no publicly available dataset for SLAM
research that contains visual information of surround-views.
To fill this gap to some extent, in this work we established
a large-scale dataset comprising synchronous multi-sensor
data from typical indoor parking sites. It will benefit further
SLAM studies, especially conducted for autonomous indoor
parking.

The remainder of this paper is organized as follows. Sect. 2 intro-
duces the related work. Sect. 3 presents the overall framework of
VISSLAM. Details for sensor calibration and system’s implementa-
tion are presented in Sect. 4 and Sect. 5, respectively. Sect. 6 reports
the experimental results and Sect. 7 concludes the paper.

2 RELATEDWORK
2.1 VI-SLAM Systems
VI-SLAM systems can be roughly categorized as loosely-coupled
and tightly-coupled ones according to their ways of sensor fusion.
Typical studies belonging to the former ones include [12] and [23].
In [12], Munguía et al. fused measurements from different sensors

and the system’s optimization was performed based on Kalman
filtering in a loosely-coupled manner. In [23], Weiss and Siegwart
estimated the full and metric scaled state of a camera-IMU device
in real time by decoupling of the visual pose estimate and the filter
state estimation. Since both the systems in [12, 23] separately es-
timate the motion of the IMU and the camera, they fail to obtain
highly consistent localization results due to the lack of complemen-
tary information.

By contrast, the latter ones are currently popular schemes adopted
in the field of autonomous driving, which combine the state of the
IMU and the camera to perform state estimation to ensure a con-
sistent localization result [9–11, 15, 17, 18, 20, 29]. Eminent studies
along this technical line are briefly reviewed here. MSCKF (multi-
state constraint Kalman filter) is a real-time visual-inertial navi-
gation system based on EKF (extended Kalman filter) [11]. It can
provide accurate poses in large-scale environments and the time
complexity of the MSCKF algorithm is only related to the number of
features. However, the back-end of MSCKF is based on Kalman filter
in which global information cannot be explored for optimization.
OKVIS (open keyframe-based visual-inertial SLAM) [9] predicts
the current state based on IMU measurement, and performs fea-
ture extraction and feature matching based on prediction. But it
does not support relocation, and there is no loop-closing. In [15],
Mur-Artal and Tardos incorporated IMU measurement into the
ORB-SLAM system [7, 13, 14, 16], which is widely used in the field
of autonomous driving. VINS (a monocular visual-inertial system)
[17, 18] is a robust and versatile monocular visual-inertial state esti-
mator. Its front-end resorts to KLT (Kanade-Lucas-Tomasi) tracker
[1] to track Harris corner points [8], and its back-end makes use of
sliding windows for optimization. The pre-integration of the IMU
and the vision-IMU alignment ensure VINS’ robustness and stabil-
ity. S-MSCKF (stereo multi-state constraint Kalman filter) [20] is a
binocular version of MSCKF, resorting to Fast corner [19] and KLT
tracker [1] for tracking. PIRVS (PerceptIn robotics vision system)
[29] tightly couples vision sensors and IMUs while loosely coupling
with other sensors. It needs to be noted that maps constructed
by these VI-SLAM systems only provide geometric information,
lacking of a semantic understanding of the environment.

2.2 Semantic SLAM Systems
In order to acquire a semantic understanding of the environment,
recent studies have begun to incorporate semantic features to SLAM
systems [4, 21, 25, 30]. VINet (a sequence-to-sequence learning ap-
proach to visual-inertial odometry) [4] is an end-to-end VIO (visual-
inertial odometry) that integrates deep learning and sensor fusion.
But it does not have loop-closing and map construction compo-
nents, so it is actually not a complete VI-SLAM system. CNN-SLAM
[21] exploits a CNN (convolutional neural network) to estimate the
depth of a single image and resorts to a semi-dense direct method
to produce the final globally consistent map. In [25], Yang et al.
extracted planar features from a 3D plane model and applied them
to SLAM systems in a low-texture environment. Note that features
used in these semantic SLAM systems are usually dynamically mov-
able, blurred and repetitively textured. By contrast, parking-slots
on the ground embody the stable and consistent information in
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the indoor parking environment. Due to their inabilities to per-
ceive salient features on the ground, the aforementioned SLAM
systems are prone to tracking loss during navigation. To the best
of our knowledge, the latest work that leverages features detected
on the ground is the one established in [30]. In [30], Zhao et al. de-
tected parking-slots in the surround-view images and incorporated
them to the SLAM system they built. However, artificial landmarks
were used to facilitate localization in Zhao et al.’s system, whereas
parking-slots contributed little for optimization.

3 VISSLAM
The overall framework of VISSLAM is shown in Fig. 1. Sensor con-
figuration of VISSLAM consists of a front-view camera, an IMU
and four fisheye cameras facing ground to form a surround-view
camera system. Visual features from the front-view camera, pre-
integrated IMU measurements between two consecutive keyframes
and parking-slots from the surround-view camera system consti-
tute the multi-modal sensor data for VISSLAM. There are two major
components in VISSLAM, sensor calibration and joint optimization.
Sensor calibration is responsible for multi-modal sensor data fusion,
which will be introduced in Sect. 4. The joint optimization model
plays a critical role in tightly fusing multi-modal sensor measure-
ments, which is the core of VISSLAM. Its details will be thoroughly
presented in this section with regard to its formulation and all error
terms during optimization.

3.1 Joint Optimization Model Formulation
Given keypoints Z in the front-view image, parking-slot observa-
tions O in the surround-view image and IMU measurements M,
the proposed joint optimization model for VISSLAM determines op-
timal camera poses T , map points P matched with Z as well as
parking-slot locations L, jointly. Such an optimization problem can
be defined as,

{L,T ,P}∗ = arg max
L,T,P

𝑝 (L,T ,P|O,Z,M) . (1)

Further, We reformulate 𝑝 with Bayes’ theorem as,

𝑝 (L,T ,P|O,Z,M) = 𝑝 (L,T ,P)𝑝 (O,Z,M|L,T ,P)
𝑝 (O,Z,M)

∝ 𝑝 (L,T ,P)𝑝 (O,Z,M|L,T ,P).
(2)

Since keypoints Z and parking-slot observations O are indepen-
dently observed by two sensor modalities, 𝑝 can be factorized by
separating parking-slot observations from other measurements, i.e.,

𝑝 (L,T ,P|O,Z,M)
∝ 𝑝 (L)𝑝 (T ,P)𝑝 (O|L,T ,P)𝑝 (Z,M|L,T ,P)
= 𝑝 (L)𝑝 (T ,P)𝑝 (O|L,T)𝑝 (Z,M|T ,P)

= 𝑝 (T ,P)𝑝 (Z,M|T ,P)︸                        ︷︷                        ︸
𝑣𝑖𝑠𝑢𝑎𝑙−𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙 𝑡𝑒𝑟𝑚

𝑝𝑟𝑖𝑜𝑟︷︸︸︷
𝑝 (L)

𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛︷       ︸︸       ︷
𝑝 (O|L,T)︸               ︷︷               ︸

𝑠𝑢𝑟𝑟𝑜𝑢𝑛𝑑−𝑣𝑖𝑒𝑤 𝑡𝑒𝑟𝑚

,

(3)

where the first two terms are with visual features and IMU motion
data, and the latter is the surround-view error term. Concretely,
following [15], the visual-inertial term can be converted into a vi-
sual error term and an inertial error term, E𝑉 and E𝐼 , respectively.

E𝑉 links each keypoint and its projecting map point while E𝐼 con-
strains consecutive keyframes by visual-inertial alignment, pre-
dicting stable and reliable camera poses estimation and map point
locations. Parking-slots in surround-view images encode abundant
information, the location, the width, the detection confidence, and
the adjacency property et al., imposing a surround-view constraint
E𝑆 . Therefore, in order to find out optimal estimation, we jointly
optimize visual, inertial and surround-view error terms in a tightly-
coupled objective,

{L,T ,P}∗ = arg min
L,T,P

E𝑉 + E𝐼 + E𝑆 . (4)

Intuitively, with Eq. 4, VISSLAM is optimized by jointly mini-
mizing errors of visual re-projection error, IMU motion error and
surround-view error over parking-slots. The model of Eq. 4 is in
charge of dealing with both low-level geometric/motion data as well
as semantic features in the surround-view image, simultaneously. It
enables robust perception of indoor parking environment, avoiding
vulnerability to blur, dramatic lighting changes, and low-texture
conditions as in the traditional SLAM system. Three error terms of
Eq. 4, E𝑉 , E𝐼 , and E𝑆 , are detailed in the subsequent subsections.

3.2 Visual Error Term
The visual error term 𝑣e𝑘𝑛 involving the 𝑛-th map point P𝑛 and the
front-view camera pose T𝑘 ∈ 𝑆𝐸 (3) of the 𝑘-th keyframe is defined
as the reprojection error with respect to the matched observation
z𝑛
𝑘
, i.e.,

𝑣e𝑘𝑛 = z𝑛
𝑘
− 𝜙𝑘 (T𝑘 ,P𝑛), (5)

where 𝜙𝑘 (·) is the projection function of the front-view camera at
the time when taking the 𝑘-th keyframe. Given the set of camera
poses T = {T𝑘 }𝐾𝑘=1 and map points P = {P𝑛}𝑁𝑛=1, E𝑉 tackles the
problem of jointly optimizing camera poses T and map points P,
i.e.,

E𝑉 =

𝐾∑
𝑘=1

𝑁∑
𝑛=1

𝜌ℎ (𝑣e𝑇𝑘𝑛 Λ−1
𝑘𝑛 𝑣

e𝑘𝑛), (6)

where 𝜌ℎ (·) is the Huber kernel function for robustness to outliers
and Λ𝑘𝑛 = 𝜎2

𝑘𝑛
I2×2 is covariance matrix associated to the scale at

which the keypoint is detected.

3.3 IMU Error Term
The motion (orientation, velocity, position) between two consec-
utive keyframes can be determined by either pre-integrated IMU
data or the visual odometry. Each IMU error term 𝑚e𝑖 𝑗 links the
𝑖-th and the 𝑗-th keyframes, i.e.,

𝑚e𝑖 𝑗 = [𝑅e𝑖 𝑗 𝑉 e𝑖 𝑗 𝑃e𝑖 𝑗 ], (7)

where 𝑅e𝑖 𝑗 , 𝑉 e𝑖 𝑗 , 𝑃e𝑖 𝑗 denote the orientation, the velocity, and the
position error terms between consecutive keyframes, respectively.
Each error term is defined as the difference between IMU and visual
measurements. Thus, E𝐼 is defined as,

E𝐼 =
𝐾∑
𝑖=1

𝜌ℎ (𝑚e−1𝑖 𝑗 Σ𝑖 𝑚e𝑖 𝑗 ), (8)

where Σ𝑖 is the information matrix according to [15].
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Figure 1: The overall processing pipeline of VISSLAM. Multi-modal sensors are first spatially registeredwith one another. Visual
features are detected and tracked to construct a 3D map of an indoor parking site with no scale. By aligning pre-integrated
IMU measurement with the visual features in the front-view image, a map with metric scale can be obtained. In order to
build a semantic map suitable for autonomous indoor parking, parking-slots in each surround-view image are detected and
geometrically associated to constitute a surround-view constraint. The visual term, IMU term as well as the surround-view
term are integrated into VISSLAM during optimization. Joint optimization is performed in a sliding window, giving a trade-off
between the speed and the flexibility.

3.4 Surround-view Error Term
According to Eq. 3, the surround-view error term E𝑆 is split into a
prior error term and an observation error term corresponding to
𝑝 (𝐿) and 𝑝 (𝑂 |𝑇, 𝐿) respectively. (Refer to Fig. 2). The prior error
term is denoted byE𝐴𝑑 𝑗 . It predefines the position of each individual
parking-slot subject to whether it has a neighboring parking-slot.
The observation error term E𝑅𝑒𝑔 further constrains by registering
between each observation and its position in the world coordinate
system. Therefore, E𝑆 can be defined as,

E𝑆 = E𝐴𝑑 𝑗 + E𝑅𝑒𝑔 . (9)

3.4.1 Notation. Assuming that there exist 𝑀 parking-slots in the
indoor parking site. Each parking-slot is represented by twomarking-
points (p1 and p2 in Fig. 2). We denote positions of all parking-slots
by L = {L𝑚}𝑀

𝑚=1, L𝑚 ∈ R3×1, each of which is defined as the mid-
point of the entrance line connecting the two marking-points. Ad-
ditionally, widths of all parking-slots can be computed as lengths of
all entrance lines and are denoted byW = {W𝑚}𝑀

𝑚=1,W𝑚 ∈ R3×1.
At time 𝑡 , the vehicle obtains 𝐾𝑡 parking-slot observations, de-
noted by O𝑡 = {O1

𝑡 ;O
2
𝑡 ; ...;O

𝐾𝑡

𝑡 }. Parking-slots associations are
denoted by †𝑡 = {𝑦1𝑡 ;𝑦2𝑡 ; ...;𝑦

𝐾𝑡

𝑡 }, where 𝑦𝑖𝑡 ∈ {1; ...;𝑀}. For ex-
ample, at time 𝑡 = 1, the surround-view camera system obtains
three measurements O1 = {O1

1;O
2
1;O

3
1}. And these three mea-

surements are from parking-slots No. 2, No. 3 and No. 4, then
†1 = {𝑦11 ;𝑦

2
1 ;𝑦

3
1} = {2; 3; 4}.

3.4.2 Adjacency Term. 𝑝 (L) models the prior distributions for
positions of all parking-slots, each of which is independent with
one another, i.e.,

𝑝 (L) =
𝑇∏
𝑡=1

𝐾𝑡∏
𝑘=1

𝑝 (L
𝑦𝑘𝑡
), (10)

p1

1 2

Rξ
F

ξ

3

World

Adjacency Error Registration Error

O1 O2 O3 P1 P2 P3

p2

Figure 2: A surround-view error term consists of adjacency
and registration error terms. The adjacency term constrains
a parking-slot to closely contact its neighbor, providing the
prior for the parking-slot position. The registration term
finetunes the camera pose and the parking-slot position by
registering between the observed parking-slot and its posi-
tion in the world coordinate system.

where 𝑝 (L
𝑦𝑘𝑡
) is the prior of the parking-slot position associated

with the 𝑘-th parking-slot observation at time 𝑡 . It is defined sub-
ject to whether the parking-slot has adjacent neighbors. Take one
adjacent neighbor for instance, we have the follow equation, i.e.,

𝑝 (L
𝑦𝑘𝑡
) =

{
U 𝐴𝑑 𝑗 (𝑦𝑘𝑡 ) ∉ †𝑡
N(d

𝑦𝑘𝑡
+ L

𝐴𝑑 𝑗 (𝑦𝑘𝑡 )
,Λ𝑘𝑡 ) 𝐴𝑑 𝑗 (𝑦𝑘𝑡 ) ∈ †𝑡 , (11)

where U is a uniform distribution, N represents a normal distribu-
tion, and 𝐴𝑑 𝑗 (𝑦𝑡

𝑘
) denotes the ID of the neighboring parking-slot.
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L𝐴𝑑 𝑗 (𝑦𝑡
𝑘
) represents the position of the neighboring parking-slot.

Λ𝑘𝑡 models the uncertainty. d
𝑦𝑘𝑡

is a vector defined by two adjacent
parking-slots as,{

d
𝑦𝑘𝑡

// L𝐴𝑑 𝑗 (𝑦𝑡
𝑘
)L𝑦𝑘𝑡

| |d
𝑦𝑘𝑡

| |22 = 1
2 (W𝑦𝑘𝑡

+W𝐴𝑑 𝑗 (𝑦𝑡
𝑘
) ) .

(12)

d
𝑦𝑘𝑡

points from L𝐴𝑑 𝑗 (𝑦𝑡
𝑘
) to L

𝑦𝑘𝑡
. Intuitively, if a parking-slot sits

alone with no neighbor, the distribution of its location is uniform.
Otherwise, it is constrained by its neighbor to maintain the adja-
cency structure. Hence, the adjacency error term e𝑘,𝑡

𝑎𝑑 𝑗
of the 𝑘-th

parking-slot observed at time 𝑡 is defined as,

e𝑘,𝑡
𝑎𝑑 𝑗

=

{
0 𝐴𝑑 𝑗 (𝑦𝑘𝑡 ) ∉ †𝑡
d
𝑦𝑘𝑡

− (L
𝑦𝑘𝑡

− L𝐴𝑑 𝑗 (𝑦𝑡
𝑘
) ) 𝐴𝑑 𝑗 (𝑦𝑘𝑡 ) ∈ †𝑡 . (13)

Therefore, minimizing the adjacency error term implies iteratively
tweaking each parking-slot to closely contact its adjacent neighbor.

3.4.3 Registration Term. Considering all camera poses and parking-
slots, the observation term 𝑝 (O|T ,L) is defined as,

𝑝 (O|T ,L) =
𝑇∏
𝑡=1

𝐾𝑡∏
𝑘=1

𝑝 (O𝑘𝑡 |T𝑡 , L𝑦𝑘𝑡 ), (14)

where T𝑡 is the camera pose at time 𝑡 andO𝑘𝑡 represents the 𝑘-th ob-
servation at time 𝑡 . 𝑝 (O𝑘𝑡 |T𝑡 , L𝑦𝑘𝑡 ) is the observation probability of
the 𝑘-th parking-slot observation at time 𝑡 . Since each parking-slot
is associated with multiple observations, it constitutes a registration
problem between each observed parking-slot and its position in the
world coordinate system, i.e.,

𝑝 (O𝑘𝑡 |T𝑡 , L𝑦𝑘𝑡 ) = N(T𝑡L𝑦𝑘𝑡 ,Φ𝑘,𝑡 ), (15)

where Φ𝑘,𝑡 models the uncertainty. Therefore, the registration error
term of the 𝑘-th parking-slot observed at time 𝑡 can be defined as,

e𝑘,𝑡𝑟𝑒𝑔 = T𝑡L𝑦𝑘𝑡 − O𝑘𝑡 . (16)

3.4.4 Surround-view Error Term. Combining both the adjacency
term and the registration term, the surround-view error termE𝑆 can
be constructed by adding up all parking-slot observations during
navigation, i.e.,

E𝑆 = E𝐴𝑑 𝑗 + E𝑅𝑒𝑔

=

𝑇∑
𝑡=1

𝐾𝑡∑
𝑘=1

(e𝑘,𝑡
𝑎𝑑 𝑗

)−1Λ𝑘,𝑡e𝑘,𝑡𝑎𝑑 𝑗 + (e𝑘,𝑡𝑟𝑒𝑔 )−1Φ𝑘,𝑡e𝑘,𝑡𝑟𝑒𝑔 ,
(17)

where both Λ𝑘,𝑡 and Φ𝑘,𝑡 are in proportion to the detection confi-
dence of each parking-slot. By minimizing Eq. 17, intuitively, the
objective of our proposed surround-view error term encourages
both geometric and observational consistency.

4 SENSOR CALIBRATION
The configuration of VISSLAM comprises a front-view camera, an
IMU and four fisheye cameras to form a surround-view camera
system. For the best performance in sensor fusion, these different
sensors must be spatially registered with respect to one another (Re-
fer to Fig. 1 for details). The intrinsics of all visual sensors and the
IMU can be acquired according to [24, 28]. The extrinsic calibra-
tions can be categorized into two respects, surround-view camera

system calibration and camera-IMU calibration. The former can
be performed by [27]. For camera-IMU calibration, the front-view
camera and IMU are considered rigidly attached and the transfor-
mation between their coordinate systems can be denoted by T𝐶𝐵 .
Specifically, we collect a set of data typically over several minutes
as the camera-IMU is waved in front of a static calibration pattern.
Following [6], T𝐶𝐵 can be then computed by optimizing the error
term between IMU and camera measurement. With the camera pose
T𝐶𝑊 obtained from the visual odometry, IMU motion in the world
coordinate system T𝐵𝑊 can be computed as T𝐵𝑊 = T−1

𝐶𝐵
T𝐶𝑊 .

Additionally, by selecting four points P𝐺 on a calibration site, the
transformation T𝐹𝐺 from the front-view camera to the ground
can be estimated by solving a PnP (Perspective-n-Point) problem
between P𝐺 and corresponding image pixels in each camera.

5 SYSTEM IMPLEMENTATION
5.1 Parking-slot Detection
We adopt the CNN-based approach, namely DeepPS, to detect
parking-slots in a surround-view image. It first uses a CNN to
detect marking-points and then uses another CNN to classify local
image patterns determined by marking-point pairs. Its training de-
tails can be found in [27]. In addition, after checking whether two
parking-slots are sharing the same marking-point, their adjacency
property can be obtained.

5.2 Window Optimization
VISSLAM is optimized by minimizing a combination of an IMU error
term, a visual error term and a surround-view error term (Refer to
Fig. 3). The visual error term links map points and camera poses,
whereas the IMU error term links motion data (pose, velocity and
biases) between consecutive keyframes. Additionally, the surround-
view error term optimizes each parking-slot and the camera pose at
which the parking-slot is observed. In order tomake a good trade-off
between speed and flexibility, the optimization is performed within
a sliding window. Frames with sufficient features and large parallax
are selected as keyframes and are inserted into the sliding window.
Note that there are additional states of parking-slots in the surround-
view image. Therefore, frames that don’t hold enough features will,
nevertheless, be regarded as a new keyframe if parking-slots are
detected in the corresponding surround-view image. When a new
keyframe is inserted into the sliding window, it optimizes the last
𝑁 keyframes in the local window and all points seen by those 𝑁
keyframes. In addition, parking-slots are also incorporated during
optimization. A suitable local window size has to be chosen for
real-time performance. All other keyframes that share observations
of map points and parking-slots contribute to the total cost but are
fixed in a fixed window during optimization in order to provide a
deterministic solution. The keyframe 𝑁+1 is always included in the
fixed window as it constrains the IMU states. If the total number
of keyframes exceeds the local window size, redundant keyframes
are discarded. Since parking-slots in the surround-view image act
as consistent semantic features for autonomous indoor parking,
keyframes with parking-slots in the corresponding surround-view
images will not be discarded.
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the map, (2) discarded as abnormal observation, or (3) re-
garded as a new one.

5.3 Parking-slot Association
The purpose of parking-slot association is to associate parking-slot
observations along navigation. Since appearances on the ground
within each parking-slot region are either blurred or occluded by
the movable car, it is hard to distinguish parking-slots by comparing
their appearances. Therefore, the parking-slot association is mainly
based on geometric matching (Refer to Fig. 4 for details).

5.3.1 Geometric Association for Parking-slot. In particular, the prob-
ability distribution 𝑝𝑖𝑡 of the 𝑖-th parking-slot’s position detected at
time 𝑡 follows a Gaussian distribution, i.e.,

𝑝𝑖𝑡 = N(𝑤P𝑦𝑘𝑡 , 𝜎), (18)

where 𝑤P𝑦𝑘𝑡 = T−1
𝐶𝑊

O𝑘𝑡 is the estimated parking-slot position at
time 𝑡 . T𝐶𝑊 is the camera pose returned by the visual odometry.
𝜎 is the information matrix. The probability of the observation
associated with the 𝑗-th parking-slot in the map can be defined as,

𝑓 𝑖𝑡 ( 𝑗) = 𝑝𝑖𝑡 (L𝑗 ), (19)

where L𝑗 denotes the position of the 𝑗-th parking-slot.

(416 × 416)

Surround-view (10 Hz)

(10-dimensional)
Motion (200 Hz)IMU (1)

Fisheye Images (4)

Figure 5: The configuration consists of a front-view camera,
an IMU and four fisheye cameras forming a surround-view
camera system to provide a surround-view image.

We perform parking-slots association in a strict manner, i.e.,

𝑦𝑖𝑡 =


𝑘 𝑓 𝑖𝑡 (𝑘) ≤ 𝑡ℎ1
∅ 𝑡ℎ1 < 𝑓 𝑖𝑡 (𝑘) < 𝑡ℎ2

𝑛𝑡 + 1 𝑓 𝑖𝑡 (𝑘) ≥ 𝑡ℎ2,
(20)

where 𝑡ℎ1 and 𝑡ℎ2 are association and creation thresholds, which
are empirically set based on the statistics of parking-slots’ sizes.
Specifically, when 𝑓 𝑖𝑡 (𝑘) is within the association threshold 𝑡ℎ1, the
observed parking-slot is associated with the 𝑘-th parking-slot in
the map. When it is larger than the predefined creation threshold
𝑡ℎ2, it means there is no associated parking-slot in the map, and a
new parking-slot with ID 𝑛𝑡 + 1 is created in the map. Otherwise,
the parking-slot observation will be discarded.

5.3.2 Parking-slot Update. Once a parking-slot has a new observa-
tion, we need to update the position L

𝑦𝑘𝑡
of the parking-slot by the

following equation, i.e.,

L
𝑦𝑘𝑡

= (
𝑛𝑡∑
𝑛=1

_𝑛𝑡−𝑛+1T𝐶𝑊O𝑘𝑡 +𝑤 P
𝑦𝑘𝑡
)/(𝑛𝑡 + 1), (21)

where 𝑛𝑡 is the total number of parking-slots at time 𝑡 . _ = 0.9 is
the decay parameter, which implies that measurement at time 𝑡
is more reliable than that at time 𝑡 − 1. Besides, the width of the
parking-slot can be similarly updated.

6 EXPERIMENTAL RESULTS
Experiment Setup and Benchmark Dataset. We evaluated the
proposed VISSLAM in an indoor parking site by driving an electric
vehicle equipped with a front-view camera, an IMU and a surround-
view camera system consisting of four fisheye cameras (Refer to
Fig. 5 for details).

In order to facilitate the study of autonomous indoor parking al-
gorithms, we have established and released a large-scale benchmark
dataset. The dataset provides synchronized front-view images and
surround-view images at 20 Hz and 10 Hz, respectively, with IMU
measurements at 200 Hz. It contains 40,000+ front-view images
and 20,000+ surround-view images, each of which was synthesized
from four fisheye images, covering a wide variety of real cases in in-
door parking sites. 10-dimensional motion data between every two
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Figure 6: (a) A sketch of an indoor parking site from a top-
down viewpoint. (b) Mapping result using visual and iner-
tial error terms during optimization. (c) Mapping result by
VISSLAM without a surround-view error term. (d) Mapping
result by VISSLAM with a surround-view error term.

consecutive front-view images was also collected by IMU. The res-
olutions of the fisheye camera and the front-view camera are 1280
× 1080 and 1280 × 720, respectively. The spatial resolution of each
surround-view image is 416 × 416, corresponding to a 10𝑚 × 10𝑚
flat physical region, i.e., the length of 1 pixel in the surround-view
image corresponds to 2.40𝑐𝑚 on the physical ground.
Qualitative Results of VISSLAM. To qualitatively validate the
effectiveness of the proposed VISSLAM, we drove the electric vehicle
around an indoor parking site at around 10 km/h and then compared
semantic maps using different error terms during optimization.
Additional videos can be found in the supplementary material.

Fig. 7 (a) depicts a sketch of the indoor parking site from a top-
down viewpoint. Fig. 6 (b) illustrates the result incorporating both
a visual and an IMU error terms during optimization. It records
the driving path and maps the 3D landmarks in the indoor park-
ing site (3D landmarks are omitted here for display). However,
parking-slots on the ground that are essential for autonomous in-
door parking are not incorporated in the map. Fig. 6 (c) and Fig.
6 (d) demonstrate the results when the vehicle is equipped with a
surround-view camera system, both of which construct not only
3D landmarks but parking-slots detected in surround-view images.
Fig. 6 (c) shows the result without incorporating the surround-view
error term during optimization. Since the scale estimated by IMU
is difficult to be absolutely accurate, two rows of parking-slots
are considerably approximate with each other, which violates the
real situation where there is a wall between. In addition, there
are obvious overlaps between adjacent parking-slots and a certain
dislocation of the upper parking-slots. All above is due to accumu-
lated errors caused by localization, surround-view calibration and
parking-slot detection collectively. Fig. 6 (d) shows the result with
the surround-view error term during optimization. The pink color
denotes adjacency property between two parking-slots. When a
surround-view error term is taken into consideration in optimiza-
tion, the overall scale is more reasonable. The distance between each
pair of adjacent parking-slots and the distance between two rows
of parking-slots are more in line with the spatial distribution of the
real scene. Besides, the overlapping area of each pair of adjacent
parking-slots is significantly diminished, and parking-slots at the
upper turning point are basically parallel with other parking-slots.
Comparisonwith Other SLAM Systems. Table 1 shows compar-
ison of VISSLAM and eight existing representative SLAM systems
from the viewpoint of three aspects, sensor modalities used (’S’

Table 1: Comparison with other methods.

Method Sensors Map PS
Bowman et al. [2] V (Visual) Semantic ×
Civera et al. [3] V Semantic ×

Mur-Artal et al. [15] V + I (IMU) Geometric ×
Qin et al. [17] V + I Geometric ×

Tateno et al. [21] V Semantic ×
Yang et al. [25] V Semantic ×
Yu et al. [26] V Semantic

√

Zhao et al. [30] V + I + T (Tag) Semantic
√

VISSLAM V + I + S Semantic
√

for surround-view camera system), categories of map constructed,
and whether parking-slots (PS) are incorporated in the map. It can
be seen from the table that our VISSLAM is the first to incorpo-
rate surround-view camera system. It not only constructs semantic
maps with parking-slots in the environment, but leverages no other
information like Fiducial Tags used in [30] during optimization.

Table 2: Revisiting errors of selected test points. (unit:meter)

Round 𝑋 𝑌 𝑍 Δ 𝑋 Δ 𝑌 Δ 𝑍 Δ 𝐷
Point 1 (-3.60 -0.80 15.73)

Rd. 1 -3.61 -0.83 15.77 0.01 0.03 -0.04 0.051
Rd. 2 -3.60 -0.82 15.70 0 0.02 0.03 0.037
Rd. 3 -3.62 -0.83 15.75 0.02 0.03 -0.02 0.041

Point 2 (-16.79 -1.78 35.05)
Rd. 1 -16.73 –1.77 35.08 -0.06 -0.01 -0.03 0.068
Rd. 2 -16.78 -1.77 35.07 -0.01 -0.01 -0.02 0.024
Rd. 3 -16.84 -1.77 35.03 0.05 -0.01 0.02 0.055

Point 3 (-17.07 -0.45 10.2)
Rd. 1 -17.06 -0.45 10.25 -0.01 0 0.02 0.022
Rd. 2 -17.07 -0.45 10.31 0 0 -0.04 0.04
Rd. 3 -17.06 -0.45 10.28 -0.01 0 -0.01 0.014

Revisiting Error. Since it is difficult to obtain the ground truth of
driving path, we can evaluate the localization accuracy by measur-
ing the “revisiting error”. Revisiting error is valid in localization
evaluation in SLAM system because an autonomous parking sys-
tem allows for an absolute localization error during navigation. As
long as the revisiting error is small enough, the vehicle will adopt
a consistent driving strategy when it drives to the same position.

In actual operation, the driver first manually drove the vehicle
at around 10 km/h and the map was then initialized. Three map
points at different locations were selected as reference points for
test (Refer to Fig. 6(a)). Specifically, we chose two at the midpoints
of both sides of the indoor parking site and one at the corner. After
the map was stabilized (usually the vehicle should be driven for
about three rounds), we evaluated by manually driving the vehicle
to revisit three selected reference points, and recording the current
coordinates at the test points. Then the differences in X -direction,
Y -direction and Z-direction between the test points and reference
points can be obtained. The final revisiting errors ΔDs were com-
puted by adding up errors in all directions. Revisiting errors on all
three reference points (Point 1, Point 2, and Point 3) are presented
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Table 3: Gaps of adjacent parking-slots w/o surround-view error terms. (unit: meter)

Parking-slot 1 2 3 4 5 6 7 8 9 10 11 12 Mean
Without surround-view error terms 0.80 0.11 0.32 0.23 0.098 0.029 0.21 0.24 0.20 0.27 0.25 0.19 0.246
With surround-view error terms 0.18 0.18 0.074 0.073 0.096 0.060 0.11 0.08 0.077 0.06 0.073 0.21 0.106

Improvement 0.62 -0.07 0.246 0.157 0.002 -0.031 0.10 0.16 0.123 0.21 0.177 -0.02 0.140

Figure 7: Average processing time per frame using different
number of features.

in Table 2. It can be seen from Table 2 that the revisiting error of
VISSLAM at each test point is less than 0.1m. Additionally, from
Table 4, we can see that VISSLAM gains 64% of the favor compared
with the revisiting error of 0.28m in [30], confirming the superiority
of localization accuracy with VISSLAM.

Table 4: Comparison of revisiting errors with [30].

Methods Zhao et al. [30] VISSLAM
Average (unit:meter) 0.28 m 0.08 m

Distances ofAdjacent Parking-slots. Since the adjacent parking-
slots share a common marking-point, the gap between them is the-
oretically zero. By calculating the gaps of all groups of adjacent
parking-slots, we can see from Table 3 that the averaged gap of
adjacent parking-slots undergoes a dramatic decrease by 0.146m, a
57% decrease, if surround-view error terms are incorporated in opti-
mization, which demonstrates the accuracy of the map constructed
by VISSLAM.
Real-time Performance. We recorded the average processing
time per frame of VISSLAM at running speed of 8-15 km/h. The
result is presented in Fig. 7. It can be seen that when 1000 number
of features are used, the average processing time per frame within
500 frames is 0.052s, that is, the frame rate can reach 20 fps. When
the vehicle trajectory loops at around 3000 frames, the average pro-
cessing time per frame is 0.067s, reaching 15 fps, which is qualified
when driving in an indoor parking site at a low speed. In fact, the
frame rate of the system can be improved by changing the number
of extracted feature points. When the number of features extracted
in VISSLAM is set as 500/750, the running speed undergoes a con-
siderable improvement. Therefore, we can reduce the number of
extracted feature points by sacrificing a certain degree of accuracy,
if there is requirement for a higher frame rate.

Ablation Study.We performed detailed ablation analyses to val-
idate the contribution of each error term during optimization of
VISSLAM in three respects, the revisiting error, the average distance
between adjacent parking-slots and the time cost, and the results
are presented in Table 5. It can be seen from the table that both
the revisiting error and the time cost of an visual-inertial error
term based SLAM system can reach satisfied performance, which
are 0.199m and 0.045s/frame, respectively. But it is not suitable for
autonomous indoor parking, since the VI-SLAM system provides
no semantic information of parking-slots during navigation. If we
simply incorporate parking-slots in the surround-view image for
tracking without optimization, they will compromise the SLAM
system and lead to a huge revisiting error. But if the parking-slots
are incorporated in optimization, both the revisiting errors and
the adjacency gaps can be significantly diminished, confirming the
effectiveness of VISSLAM. In addition, the time cost of VISSLAM is
about 0.07s/frame (15 fps of the frame rate), which can be acceptable
for an autonomous parking system running at a moderate speed.

Table 5: Optimization results using various error terms.

Mode Revisiting error (m) Adjacency gap (m) T (s/frame)
V-I 0.199 - 0.045
S 0.317 0.243 0.040
VIS 0.028 0.106 0.067

7 CONCLUSION
In this paper, we proposed a tightly-coupled semantic SLAM sys-
tem, VISSLAM, with configuration of a front-view camera, an IMU
and a surround-view camera system mounted with four cameras
around the vehicle. Parking-slots in the surround-view image are
leveraged for optimization in order to improve the performance
of VISSLAM. The qualitative mapping results of indoor parking
sites and quantitative analyses on both localization accuracy and
mapping precision demonstrate the effectiveness of our proposed
VISSLAM. Actually, it has already been deployed on an electric car.
A large-scale benchmark dataset consisting of synchronous multi-
sensor data from typical indoor parking sites was also collected,
providing a reasonable evaluation platform for autonomous indoor
parking algorithms.
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