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VSI: A Visual Saliency-Induced Index for
Perceptual Image Quality Assessment

Lin Zhang, Member, IEEE, Ying Shen, Member, IEEE, and Hongyu Li

Abstract— Perceptual image quality assessment (IQA) aims
to use computational models to measure the image quality
in consistent with subjective evaluations. Visual saliency (VS)
has been widely studied by psychologists, neurobiologists, and
computer scientists during the last decade to investigate, which
areas of an image will attract the most attention of the human
visual system. Intuitively, VS is closely related to IQA in that
suprathreshold distortions can largely affect VS maps of images.
With this consideration, we propose a simple but very effective
full reference IQA method using VS. In our proposed IQA
model, the role of VS is twofold. First, VS is used as a
feature when computing the local quality map of the distorted
image. Second, when pooling the quality score, VS is employed
as a weighting function to reflect the importance of a local
region. The proposed IQA index is called visual saliency-based
index (VSI). Several prominent computational VS models have
been investigated in the context of IQA and the best one is
chosen for VSI. Extensive experiments performed on four large-
scale benchmark databases demonstrate that the proposed IQA
index VSI works better in terms of the prediction accuracy than
all state-of-the-art IQA indices we can find while maintaining a
moderate computational complexity. The MATLAB source code
of VSI and the evaluation results are publicly available online at
http://sse.tongji.edu.cn/linzhang/IQA/VSI/VSI.htm.

Index Terms— Perceptual image quality assessment, visual
saliency.

I. INTRODUCTION

QUANTITATIVE evaluation of an image’s perceptual
quality is one of the most fundamental yet challenging

problems in image processing and vision research. Image
quality assessment (IQA) methods fall into two categories:
subjective assessment by humans and objective assessment
by algorithms designed to mimic the subjective judgments.
Though subjective assessment is the ultimate criterion of
an image’s quality, it is time-consuming, cumbersome,
and cannot be implemented in systems where a real-time
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quality score for an image or video sequence is needed.
Recently, there has been an increasing interest in developing
objective IQA methods. According to the availability of a
reference image, objective IQA indices can be classified as
full reference (FR), no-reference (NR) and reduced-reference
(RR) methods [1]. In this paper, the discussion is confined
to FR methods, where the pristine “distortion free” image is
known as the reference image.

As a conventional fidelity metric, the peak-to-noise
ratio (PSNR) or the mean squared error (MSE), works well for
evaluating the quality of images sharing the same content and
the same distortion type. However, quality scores predicted
by PSNR or MSE do not correlate well with human beings’
subjective fidelity ratings when multiple images or multiple
distortion types are involved [2]. In the past decade, several
sophisticated IQA models have been proposed and some
representative ones will be briefly reviewed here.

The noise quality measure index (NQM) [3] and the
visual signal-to-noise ratio index (VSNR) [4] emphasize the
importance of human visual system (HVS)’s sensitivity to
different visual signals, such as the luminance, the contrast,
the frequency content, and the interaction between them.

The structural similarity index (SSIM) proposed by
Wang et al. [5] can be considered as a milestone of the
development of IQA models. SSIM is based on the hypothesis
that HVS is highly adapted to extract the structural informa-
tion from the visual scene and therefore a measurement of
structural similarity can provide a good approximation of the
perceived image quality. In their later work, Wang et al. pro-
posed a multi-scale extension of SSIM, namely MS-SSIM [6]
and it has been corroborated that MS-SSIM could produce
better results than its single scale counterpart. In [7], Wang
and Li improved the original MS-SSIM to the information
content weighted SSIM index (IW-SSIM) by introducing a
new information content weighting (IW)-based quality score
pooling strategy.

In [8], Sheikh et al. proposed the visual information fidelity
index (VIF), which was an extension of its former version,
i.e. the information fidelity criterion index (IFC) [9]. In VIF,
Sheikh et al. treated the FR IQA problem as an informa-
tion fidelity problem and the fidelity were quantified by the
amount of information shared between the reference image
and the distorted image. In [10], Zhang et al. proposed a
Riesz transforms based feature similarity index (RFSIM).
In RFSIM, 1st-order and 2nd-order Riesz transforms are used
to characterize image’s local structures and the Canny edge
detector is employed to generate the mask for quality score
pooling. Larson and Chandler argued that the HVS performs
two distinct strategies when assessing the image quality for

1057-7149 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



ZHANG et al.: VSI FOR PERCEPTUAL IQA 4271

high-quality images and for low-quality images, and accord-
ingly they proposed a most apparent distortion (MAD) based
IQA index [11]. The feature similarity index (FSIM) proposed
in [12] employs two features to compute the local similarity
map, the phase congruency and the gradient magnitude. The
authors claimed that the phase congruency and the gradient
magnitude play complementary roles in characterizing the
local image quality. At the quality score pooling stage of
FSIM, phase congruency map is utilized again as a weight-
ing function since it can roughly reflect how perceptually
important a local patch is to the HVS. By considering that
structural and contrast changes can be effectively captured
by gradients, Liu et al. proposed a gradient similarity based
metric (GSM) [13] for FR IQA. For a thorough survey of
modern IQA development, please refer to [14] and [15].

On the other hand, in recent years how to build effective
computational visual saliency (VS) models has been attract-
ing tremendous attention [16]–[18]. Given an image, its VS
map computed by an appropriate VS model can reflect how
“salient” a local region is to the HVS. Intuitively, VS and IQA
are intrinsically related because both of them depend on how
HVS perceives an image and suprathreshold distortions can
be a strong attractor of visual attention [19]. Thus recently,
researchers have been trying to incorporate VS information
to IQA models to improve their performance. Meanwhile,
there are also some other studies focusing on the relation-
ship between visual attention and the perceptual quality of
videos [30]–[33].

The relationship between VS and IQA has been investigated
by some researchers in previous studies and it is widely
accepted that incorporating VS information appropriately can
benefit IQA metrics. However, a practical VS-based com-
putational IQA model that could achieve better prediction
performance than the other state-of-the-art methods, such as
IW-SSIM [7], FSIMC [12], GSM [13], has not come out yet.
In this paper, we expect to fill this research gap to some
extent. By analyzing the relationship between the changes of
an image’s VS map and its perceived quality degradation, we
propose a simple yet very effective VS-based index (VSI) for
the IQA task. We claim that the VS map cannot be only used
as a weighting function at the score-pooling stage, but can
also be used as a feature map to characterize the quality of
local image regions. The underlying reason is that perceptible
quality distortions can lead to measurable changes of images’
visual saliency maps. Consequently, in our proposed VSI
metric, the role of an image’s VS map is twofold: a feature
map characterizing the image’s local quality, as well as a
weighting function indicating the importance of a local region
to the HVS when pooling the final quality score. In our work,
several eminent VS models have been explored in the context
of IQA and the most suitable one is selected for VSI. VSI is
thoroughly examined by extensive experiments conducted on
four large scale databases. The results show that our proposed
VSI works consistently better than all the other state-of-the-art
IQA metrics. In addition, the computational complexity of VSI
is quite low. The Matlab source code of VSI and the associated
evaluation results have been made publicly available online at
http://sse.tongji.edu.cn/linzhang/IQA/VSI/VSI.htm.

The remainder of this paper is organized as follows.
Section II introduces the works relevant to this paper.
Section III presents in detail the proposed VSI metric for IQA.
Section IV presents the experimental results and associated
discussions. Finally, Section V concludes the paper.

II. RELATED WORKS

This section presents works most related to our paper, which
covers a brief review of modern VS models and their existing
applications in IQA.

A. Computational Visual Saliency Models

As a consequence of evolution, most vertebrates, including
humans, have a remarkable ability to automatically pay more
attention to salient regions of the visual scene. Building
effective computational models to simulate human visual
attention has been studied by scholars in psychology, neu-
robiology, and computer vision for a long time, and some
powerful models have been proposed. Although both bottom-
up (scene dependant) and top-down (task dependant) factors
will affect the visual attention, most of the existing compu-
tational VS models are bottom-up since bottom-up attention
mechanisms are more thoroughly studied than top-down mech-
anisms. In bottom-up VS models, it is supposed that visual
attention is driven by low-level visual stimulus in the scene,
such as intensity, color, orientation, etc.

The first influential and best known VS model was
proposed by Itti et al. [34] for still images. Itti et al.’s model
was based on the VS computational architecture introduced
by Koch and Ullman [35]. Itti et al.’s contribution mainly
lies in two aspects. First, they introduced image pyramids for
feature extraction, which makes the VS computation efficient.
Second, they proposed the biologically inspired “center-
surround difference” operation to compute feature dependant
saliency maps across scales. In their later work, Itti and Baldi
introduced a Bayesian model of surprise aiming to predict eye
movements [36]. In [37], following Itti et al.’s architecture,
Harel et al. proposed the graph-based visual saliency (GBVS)
model by introducing a novel graph-based normalization and
combination strategy. In another work following Itti et al.’s
framework, Klein and Frintrop [38] modeled the center-
surround contrast in an information-theoretic way, in which
two distributions of visual feature occurrences are determined
for a center and for a surround region, respectively.
By analyzing the log-spectrum of the input image, Hou and
Zhang [39] proposed a Fourier transform based method to
extract the spectral residual (SR) of an image in the spectral
domain and to construct the corresponding saliency map in
the spatial domain; one prominent advantage of this method is
its low computational complexity. In Hou’s recent work [40],
he developed a saliency algorithm based on the image signa-
ture (IS), which can approximate the foreground of an image
and can be simply computed as the sign map of the image’s
DCT (discrete cosine transform) coefficients. In [41], Bruce
and Tsotsos proposed the model of attention based on infor-
mation maximization (AIM), in which an image’s saliency is
modeled as the maximum information that can be sampled
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from it. In [42], Seo and Milanfar used local regression
kernels (LRK) as features and used a local “self-resemblance”
measure, which indicates the likelihood of saliency, to build
an image’s saliency map. In [43], Achanta et al. proposed
a conceptually simple approach for detecting saliency by
combining image’s responses to band-pass filters from three
CIEL*a*b* channels. In [44], Judd et al. extracted various
types of features and fed them into a SVM to train a model to
predict the visual saliency of a given test image. In [45], Shen
and Wu represent an image as a low-rank matrix plus sparse
noises, where the low-rank matrix explains the non-salient
regions while the sparse noises indicate the salient regions.
By integrating prior knowledge from three aspects, frequency
prior, color prior, and location prior, Zhang et al. [46]
proposed an efficient saliency algorithm, namely SDSP
(Saliency Detection by combining Simple Priors).

For a complete recent survey of modern VS models, please
refer to [16]–[18].

B. Existing Investigations of Visual Saliency in IQA

Recently, increased awareness to the close relationship
between VS and quality perception has led to a number
of approaches that try to integrate VS into IQA metrics to
potentially improve their prediction performance.

In [20], Vu et al. designed two experiments to examine
visual fixation patterns when judging image quality. Their
results revealed that regions where people fixate while judging
image quality can be different from those obtained under task-
free condition. In their another work [21], five common fidelity
metrics were augmented using two sets of fixation data, one
set obtained under task-free viewing conditions and another
set obtained when viewers were asked to judge image quality.
The results show that most metrics could be improved using
fixation data and a greater improvement was found using
fixations obtained in the task-free condition. Similar results
have also been obtained by a recent study [22]. In [23],
Larson et al. revealed that common metrics (such as SSIM,
PSNR, VIF, etc.) could be improved by using spatially varying
weights for pooling. In [24], a framework was introduced to
extend existing quality metrics by segmenting an image into
ROI (region of interest) and background regions. With such
a method, the metrics are computed independently on ROI
and background regions and then a pooling function is used
to derive the final quality score. The abovementioned works
demonstrate that if being incorporated appropriately, visual
attention data can benefit the design of IQA metrics. However,
it should be noted that the visual attention data or the ROI
data used in these works are either obtained by eye tracking
or are hand-labeled. Thus, these approaches cannot be used in
applications where a fully automatic IQA metric is needed.

Rather than using eye-tracking or subjective ROI data, some
researchers attempted to incorporate VS information computed
by using computational VS models into IQA models. Repre-
sentative works belonging to this category include [25]–[29]
and they share some common characteristics.

At first, these studies are based on the assumption that
a distortion occurring in an area that attracts the viewer’s

attention is more annoying than in any other area, and they
attempt to weight local distortions with a local saliency map.
Consequently, pooling strategies adopted in these methods
share a general form as:

S =
∑

K
i wi si

/∑
K
i wi (1)

where si is the local quality value at the i -th location in the
local quality map, wi is the VS value at the location i , K is
the number of points in the image, and S is the final quality
score of the examined image.

Secondly, for these methods, the motivation is actually
not to design a new IQA index but to demonstrate that a
VS-weighted pooling strategy could perform better than the
simple “mean” scheme. Thus, for computing the local quality
map, they all adopt some existing methods, such as PSNR,
SSIM, and VIF, without discussing whether there could be
more effective methods to characterize the local image quality.

Thirdly, these works lack extensive evaluations to verify the
effectiveness of the proposed IQA indices. Usually, the exper-
iments were performed only on a specific dataset and only
some classic IQA indices (e.g., SSIM, VIF, PSNR) were used
for comparison. Some recently developed high performance
IQA metrics, such as IW-SSIM [7], FSIM/FSIMC [12], and
GSM [13], were not compared with, which makes the elicited
conclusions less convincing.

III. VS-BASED INDEX (VSI) FOR IQA

As stated in Section II, VS has already been used as a
weighting function for quality score pooling in some previous
studies [25]–[29]. In [12], Zhang et al. have shown that
perceptible image quality degradation can lead to perceptible
changes in image’s low-level features. Since the bottom-up
VS models are basically based on image’s low-level features,
the VS values themselves actually vary with the change of
image quality. Therefore, why don’t we use VS as a feature to
compute the local similarity map between the reference image
and the distorted image?

We find that quality distortions could give rise to changes
in images’ VS maps and the intensities of such measurable
changes correlate well with the degrees of perceptible quality
distortions. To support our claim, we have conducted a sta-
tistical analysis on VS maps of images in TID2013 [47],
the most comprehensive dataset available for IQA research.
In TID2013, there are 25 reference images, 24 distortion types
and 5 distortion levels. Hence, for one distortion type at a par-
ticular distortion level, there are 25 samples. To perform such
an analysis, we at first computed VS maps for all the images
by using GBVS model [37] and then for each reference-
distortion image pair, we computed the MSE between their VS
maps. After that, we averaged MSEs belonging to the same
distortion type and the same distortion level. The results are
listed in Table I.1 In each field of Table I, we also present
the average subjective score for the corresponding distortion
type and distortion level in a bracket. In TID2013, a higher

1For better observation, MSE values listed here are the actual MSE values
multiplied by 106.
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TABLE I

AVERAGE MSES OF VS AND AVERAGE SUBJECTIVE SCORES

FOR DISTORTIONS AT DIFFERENT LEVELS

subjective score indicates a better image quality. Based on the
results listed in Table I, we could have the following findings.

At first, for nearly all types of distortions, a lower average
subjective score corresponds to a severer average VS changes
measured by MSE. Secondly, even for most cross-distortion
cases, VS changes can also be a good indicator of perceptual
image quality. For example, the average subjective score for
the distortion “SCN Level 5” (2.69) is much poorer than the
one for the distortion “AGN Level 1” (5.67); as expected, the
average VS changes for the distortion “SCN Level 5” (244.19)
is much severer than the one for the distortion “AGN Level 1”
(2.68). The relationship between the quality distortions and VS
changes is illustrated using an example in Fig. 1. Images used
in Fig. 1 are from TID2013. Fig. 1(a) is a reference image and

Fig. 1. (a) is a reference image while (c) and (e) are its two distorted
versions; subjective scores for (c) and (e) are 5.05 and 2.40, respectively; (b),
(d) and (f) are the VS maps of (a), (c) and (e), respectively; the MSE between
(d) and (b) is 4.49 while the MSE between (f) and (b) is 198.36.

Figs. 1(c) and (e) are its two distorted versions. The subjective
scores for Figs. 1(c) and (e) are 5.05 and 2.40, respectively.
Figs. 1(b), 1(d) and 1(f) are the VS maps of Figs. 1(a), 1(c)
and 1(e), respectively. The MSE between Figs. 1(d) and 1(b)
is 4.49 while the MSE between Figs. 1(f) and 1(b) is 198.36.
Fig. 1(e) has a poorer quality than Fig. 1(c) and as expected,
its VS map Fig. 1(f) alters much more than Fig. 1(c)’s
VS map Fig. 1(d) when being compared with the reference
VS map Fig. 1(b).

Based on the above analysis, it can be seen that in most
cases, changes of VS maps can be a good indicator of
distortion degrees and thus, in this paper we propose to use the
VS map as a feature to characterize the image’s local quality.

However, from Table I, it can be seen that as a quality
distortion indicator, VS map does not work quite well for
the distortion type CTC (Contrast Change). The root reason
is that due to the normalization operations involved in VS
computational models, the VS value at a pixel is a measure to
reflect its relative distinctiveness to its surroundings, which
makes VS weak to characterize image’s absolute contrast.
Nonetheless, image’s local contrast does affect much HVS’
perception of the image quality. We use an example in Fig. 2
to illustrate this fact. Fig. 2(a) is a reference image while
2(b) is a distorted version of it and the distortion type is
contrast reduction. Fig. 2(c) and Fig. 2(d) are the VS maps
of Fig. 2(a) and Fig. 2(b), respectively. It can be clearly seen
that Fig. 2(b) has lower quality than Fig. 2(a). However, such
a quality degradation caused by contrast reduction cannot be
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Fig. 2. (a) is a reference image while (b) is a distorted version of it (the
distortion type is contrast reduction); (c) and (d) are the VS maps computed
from (a) and (b) respectively using the GBVS model [37]; (e) and (f) are the
GM maps computed from (a) and (b) respectively using the Scharr gradient
operator. No significant difference can be observed between (c) and (d),
which indicates that VS map behaves poorly in characterizing the contrast
loss of the images. By contrast, apparent differences can be observed between
(e) and (f), indicating that GM map has a good capability in reflecting the
contrast loss of images.

reflected in their VS maps, since no significant difference can
be observed between Fig. 2(c) and Fig. 2(d).

Fortunately, we can use an additional feature to compensate
for the lack of contrast sensitivity of VS. The simplest feature
of this kind may be the gradient modulus (GM). There are
several different operators to compute the image gradient,
such as the Prewitt operator, the Sobel operator, the Roberts
operator [48] and the Scharr operator [49], and here we adopt
the Scharr gradient operator, which has been proved very
powerful in our previous work [12]. With Scharr gradient
operator, the partial derivatives Gx (x) and Gy(x) of an image
f (x) are calculated as:

Gx (x) = 1

16

⎡

⎣
3 0 −3

10 0 −10
3 0 −3

⎤

⎦ ∗ f (x)

Gy(x) = 1

16

⎡

⎣
3 10 3
0 0 0

−3 −10 −3

⎤

⎦ ∗ f (x) (2)

The GM of f (x) is then computed as G(x) =√
G2

x(x) + G2
y(x). GM maps of Figs. 2(a) and 2(b) are visual-

ized in Figs. 2(e) and 2(f), respectively. Apparent differences
can be observed between Figs. 2(e) and 2(f), indicating that
GM map has a good potential capability in reflecting the
local contrast loss of images. Therefore, VS and GM are

complementary and they reflect different aspects of the HVS
in assessing the local quality of the input image.

From Table I, it can also be seen that as a quality distortion
indicator, VS map does not work quite well for the distortion
type CCS (Change of Color Saturation) either. Actually, color
distortion cannot be well characterized by gradient either since
usually gradient is computed from the luminance channel of
images. Hence, to make the IQA metric possess the capability
to deal with color distortions, chrominance information
should be given special considerations. Consequently, for
RGB color images, we first transform them into an opponent
color space [50]:

⎡

⎣
L
M
N

⎤

⎦ =
⎡

⎣
0.06 0.63 0.27
0.30 0.04 −0.35
0.34 −0.6 0.17

⎤

⎦

⎡

⎣
R
G
B

⎤

⎦ (3)

The weights in the above conversion are optimized for the
HVS [51]. Then, the gradients are computed from L channels.
M and N , two chrominance channels, will be used as features
to characterize the quality degradation caused by color
distortions.

With the extracted VS, GM, and chrominance features, we
can define a VS-based index (VSI) for IQA tasks. Suppose
that we are going to calculate the similarity between images
f1 and f2. Denote by VS1 and VS2 the two VS maps extracted
from images f1 and f2 using a specific VS model; denote by
G1 and G2 the two GM maps; denote by M1 and M2 the two
M channels; and denote by N1 and N2 the two N channels.
The computation of VSI consists of two stages. In the first
stage, the local similarity map is computed, and in the second
stage, we pool the similarity map into a single quality score.

We separate the similarity measurement between f1(x) and
f2(x) into three components, one for VS, one for GM, and the
other for chrominance. First, the similarity between VS1(x) and
VS2(x) is defined as:

SV S(x) = 2V S1(x) · V S2(x) + C1

V S2
1 (x) + V S2

2 (x) + C1
(4)

where C1 is a positive constant to increase the stability of SV S .
Similarly, the GM values G1(x) and G2(x) are compared as:

SG (x) = 2G1(x) · G2(x) + C2

G2
1(x) + G2

2(x) + C2
(5)

where C2 is another positive constant. The similarity between
the chrominance components is simply defined as:

SC (x) = 2M1(x) · M2(x) + C3

M2
1 (x) + M2

2 (x) + C3
· 2N1(x) · N2(x) + C3

N2
1 (x) + N2

2 (x) + C3
(6)

In our experiments, C1, C2 and C3 are all fixed so that the
proposed VSI can be conveniently applied to all datasets.
Then, SV S(x), SG (x) and SC (x) are combined to get the local
similarity S(x) of f1(x) and f2(x). We define S(x) as follows:

S(x) = SV S(x) · [SG(x)]α · [SC (x)]β (7)

where α and β are two parameters used to adjust the relative
importance of VS, GM, and chrominance features.

Having obtained the local similarity S(x) at each location x,
the overall similarity between f1 and f2 can be calculated.
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Fig. 3. Illustration for the computational process of the proposed IQA index VSI. f1 is a reference image and f2 is a distorted version of f1.

It has been widely accepted that different locations can have
different contributions to the HVS’ perception of the image
quality and it would be better if the score pooling strategy
could be correlated with human visual fixation. Consequently,
in our VSI framework, it is natural to choose the VS map to
characterize the visual importance of a local region. Intuitively,
for a given position x, if anyone of f1(x) and f2(x) has a high
VS value, it implies that this position x will have a high impact
on HVS when it evaluates the similarity between f1 and f2.
Therefore, we use VSm(x) = max(VS1(x), VS2(x)) to weight
the importance of S(x) in the overall similarity. Actually,
a similar form was used in [12]. Finally, the VSI metric
between f1 and f2 is defined as:

VSI =
∑

x∈� S(x) · V Sm(x)∑
x∈� V Sm(x)

(8)

where � means the whole spatial domain. It can be easily
verified that as a metric function VSI satisfies the symmetry
property mentioned in [5]. The procedures to compute VSI
are illustrated by an example in Fig. 3.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. Experimental Protocol

Experiments were conducted on four large-scale image
datasets constructed for evaluating IQA indices, including
TID2013 [47], TID2008 [52], CSIQ [11] and LIVE [53]. The
important information of these four datasets, in terms of the
number of reference images, the number of distorted images,
the number of quality distortion types, and the number of
subjects performing the subjective evaluations, is summarized
in Table II. Totally, there are 6345 distorted images contained
in these datasets.

Four commonly used performance metrics are employed to
evaluate the IQA indices. The first two are the Spearman rank-
order correlation coefficient (SROCC) and the Kendall rank-
order correlation coefficient (KROCC), which can measure the
prediction monotonicity of an IQA index. These two metrics

TABLE II

BENCHMARK DATASETS FOR EVALUATING IQA INDICES

TABLE III

SROCC VALUES OBTAINED BY USING VSI WITH DIFFERENT

VS MODELS ON THE SUB-DATASET

operate only on the rank of the data points and ignore the
relative distance between data points. To compute the other
two metrics we need to apply a regression analysis to provide
a nonlinear mapping between the objective scores and the
subjective mean opinion scores (MOS). The third metric is the
Pearson linear correlation coefficient (PLCC) between MOS
and the objective scores after nonlinear regression. The fourth
metric is the root mean squared error (RMSE) between MOS
and the objective scores after nonlinear regression. For the
nonlinear regression, we used the following mapping function
as suggested by Sheikh et al. [53]:

f (x) = β1

(
1

2
− 1

1 + eβ2(x−β3)

)
+ β4x + β5 (9)



4276 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 23, NO. 10, OCTOBER 2014

TABLE IV

PERFORMANCE COMPARISON OF 13 IQA INDICES ON FOUR BENCHMARK DATASETS

TABLE V

OVERALL PERFORMANCES OF IQA INDICES OVER 4 DATASETS

where βi , i = 1, 2, . . . , 5, are parameters to be fitted. More
details about the definitions and explanations of these four
performance metrics can be found in [7].

VSI was compared with the other 12 state-of-the-art or
representative IQA indices, including SSIM_I [29], SSIM [5],
MS-SSIM [6], IFC [9], VIF [8], VSNR [4], MAD [11],
GSM [13], IW-SSIM [7], RFSIM [10], FSIM [12], and
FSIMC [12]. It needs to be pointed out that SSIM_I [29] is
a representative IQA model which adopts a visual saliency
map as a weighting function for score pooling. Specifi-
cally, SSIM_I uses SSIM [5] to compute the local quality
map and uses Itti’s model [34] to compute the visual
saliency map.

B. Evaluation of VS Models, Determination of Parameters,
and Examination of Two Roles of VS

In our VSI scheme, the VS map could be computed
using various VS models. In order to find an appropriate
candidate for VSI, eight eminent computational VS models,
including Itti’s model [34], GBVS [37], AIM [41], LRK [42],
SR [39], FT [43], IS [40] and SDSP [46] were tested for VSI.
In order to reduce the burden of parameter adjustment, in this

TABLE VI

RANKING OF OVERALL PERFORMANCES OF IQA INDICES

experiment only a sub-dataset of TID2008 was used, which
contained the first 8 reference images and the associated 544
distorted images. For each VS model evaluated, the related
parameters were tuned experimentally and the tuning criterion
was that the parameter value leading to a higher SROCC
would be chosen. The SROCC values obtained by VSI with
eight different VS models on the tuning dataset are listed
in Table III, from which we can see that the SDSP model
could achieve better results than the others. Thus, in all of the
following experiments, SDSP was used to compute the VS
map for VSI. Key parameters α and β are set as 0.40 and
0.02, respectively.

In VSI, the role of the VS map is twofold: a feature
map characterizing the image’s local quality and a weighting
function indicating the importance of a local region for quality
score pooling. In this experiment, we will show the benefits
brought by these two roles of VS map. The experiment was
conducted on TID2013 dataset and we use SROCC as the
performance measure. If VS map was used only as a weighting
function for quality score pooling (in this case, the local
quality map was computed based on the gradient modulus
map and two chrominance channels), the SROCC obtained
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Fig. 4. Scatter plots of subjective MOS against scores obtained by model prediction on the TID2013 database. (a) SSIM_I, (b) SSIM, (c) MS-SSIM,
(d) IFC, (e) VIF, (f) VSNR, (g) MAD, (h) GSM, (i) IWSSIM, (j) RFSIM, (k) FSIM, and (l) VSI.

was 0.8802. If VS map was used only as a feature map
and we used a simple averaging strategy for quality score
pooling, the SROCC was 0.8704. If VS map was used both
as a feature map and a weighting function, the SROCC was
0.8965. From this experiment, it can be seen that to better
explore the power of VS map, it should be used both as

a feature map and a weighting function for quality score
pooling.

C. Performance Evaluation

In this section, the prediction performance measured by
SROCC, KROCC, PLCC, and RMSE of each competing IQA
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TABLE VII

SROCC VALUES OF IQA INDICES FOR EACH TYPE OF DISTORTIONS

index on each benchmark dataset is given. The results are
listed in Table IV. For each performance measure, the two IQA
indices producing the best results are highlighted in boldface.
In addition, as suggested by Wang and Li [7], in order to pro-
vide an evaluation of the overall performance of the evaluated
IQA indices, in Table V we present their weighted-average

SROCC, KROCC and PLCC results over four datasets and
the weight assigned to each dataset linearly depends on the
number of distorted images contained in that dataset. The
ranking of the weighted-average performances of the evaluated
IQA indices based on three different performance metrics,
SROCC, KROCC, and PLCC, is presented in Table VI.
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From Table IV, it can be seen that VSI performs consistently
well on all the benchmark databases. Particularly, it performs
greatly better than all the other competitors on the two largest
databases, TID2013 and TID2008. On CSIQ and LIVE, even
though it is not the best, VSI performs only slightly worse
than the best results. By contrast, for the other methods,
they may work well on some database but fail to provide
good results on other databases. For example, though VIF
and MAD can get pleasing results on LIVE, they perform
quite poor on TID2013 and TID2008. In Tables V and VI,
the statistical superiority of VSI to the other competing IQA
indices is clearly exhibited since no matter which performance
measure is used, VSI always achieves the best overall results.
Hence, we can conclude that objective scores predicted by VSI
correlate much more consistently with subjective evaluations
than all the other IQA indices evaluated.

In addition, in Fig. 4 we show the scatter plots of subjective
scores against objective scores predicted by some representa-
tive IQA indices (SSIM_I, SSIM, MS-SSIM, IFC, VIF, VSNR,
MAD, GSM, IW-SSIM, RFSIM, FSIM, and VSI) on TID2013,
at present the largest benchmark database for evaluating IQA
indices. The curves shown in Fig. 4 were obtained by a
nonlinear fitting using Eq. (9). From Fig. 4, it can also be
seen that objective scores predicted by VSI is more correlated
with subjective ratings than the other competitors.

D. Performance Comparison on Individual Distortion Types

To more comprehensively evaluate an IQA index’s ability to
predict image quality degradations caused by specific types of
distortions, in this experiment, we examined the performance
of the competing methods on each type of distortions. We use
SROCC as the performance measure. In fact, by using the
other measures, such as KROCC, PLCC, and RMSE, similar
conclusions could be drawn. The results are summarized in
Table VII. There are a total of 52 groups of distorted images
in the four databases.

For each database and each distortion type, the first three
IQA indices producing the highest SROCC values are high-
lighted in boldface. It can be seen that VSI is among the
top 3 indices 34 times, followed by FSIMC (27 times) and
GSM (25 times). Thus, we can have the following conclusions.
In general, when the distortion is of a specific type, VSI per-
forms the best, while FSIMC and GSM can have comparable
performance. Moreover, in this case, VSI, FSIMC and GSM
perform much better than the other IQA indices.

E. Computational Cost

The running speed of each selected IQA index was also
evaluated. Experiments were performed on a standard HP
Z620 workstation with a 3.2GHZ Intel Xeon E5-1650 CPU
and an 8G RAM. The software platform was Matlab R2012a.
The time cost consumed by each IQA index for measuring
the similarity of a pair of 384 ×512 color images (taken from
TID2013) is listed in Table VIII. From Table VIII we can see
that VSI has a moderate computational complexity. Particu-
larly, it runs much faster than the other modern IQA indices

TABLE VIII

TIME COST OF EACH IQA INDEX

which could achieve state-of-the-art prediction performances,
such as FSIMC, FSIM, IW-SSIM, and MAD.

V. CONCLUSIONS

In this paper, we proposed a novel metric for IQA, namely
visual saliency based index (VSI). It is based on the assump-
tion that an image’s VS map has a close relationship with
its perceptual quality. In VSI, the visual saliency (VS) map
is explored at two stages. At the stage of local quality map
computation, the VS map is taken as an image feature; while
at the quality score pooling stage, it is used as a weighting
function to characterize the importance of a local image region.
Several representative VS models were examined under our
framework of VSI for IQA tasks, and among them the SDSP
model performs the best. The proposed VSI was thoroughly
tested and compared with the other 12 state-of-the-art or
widely cited IQA indices on four large-scale benchmark IQA
databases. The results demonstrated that the proposed IQA
index VSI could yield statistically much better results in
terms of the prediction accuracy than all the other competing
methods evaluated while still maintaining a moderate compu-
tational complexity. To some extent, VSI is actually an open
framework; therefore, with the advent of even more powerful
VS models, VSI of course can be improved accordingly.
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