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Abstract—An SVS usually consists of four wide-angle fisheye
cameras mounted around the vehicle to sense the surrounding
environment. From the images synchronously captured by
cameras, a top-down surround-view can be synthesized, on the
premise that both intrinsics and extrinsics of the cameras have
been calibrated. At present, the intrinsic calibration approach
is relatively complete and can be pipelined, while the extrinsic
calibration is still immature. To fill such a research gap, we
propose a novel extrinsic self-calibration scheme which follows
a weakly supervised framework, namely WESNet (Weakly-
supervised Extrinsic Self-calibration Network). The training of
WESNet consists of two stages. First, we utilize the corners in
a few calibration site images as the weak supervision to roughly
optimize the network by minimizing the geometric loss. Then,
after the convergence in the first stage, we additionally introduce
a self-supervised photometric loss term that can be constructed
by the photometric information from natural images for further
fine-tuning. Besides, to support training, we totally collected 19,078
groups of synchronously captured fisheye images under various
environmental conditions. To our knowledge, thus far this is the
largest surround-view dataset containing original fisheye images.
By means of learning prior knowledge from the training data,
WESNet takes the original fisheye images synchronously collected
as the input, and directly yields extrinsics end-to-end with little
labor cost. Its efficiency and efficacy have been corroborated by
extensive experiments conducted on our collected dataset. To make
our results reproducible, source code and the collected dataset have
been released.1

Index Terms—Extrinsic calibration, photometric loss, surround-
view dataset, surround-view system, weakly supervised learning.
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I. INTRODUCTION

A S AN indispensable component of modern ADAS [1], the
surround-view system (SVS) has been installed by more

and more vehicles. In the SVS, four wide-angle fisheye cameras
that cover the 360-degree field of view around the vehicle are
mounted. Based on the multi-view geometry knowledge [2], the
top-down surround-view images can be synthesized at runtime
from the multi-stream videos collected synchronously. With the
surround-view, the driver can conveniently check whether there
are obstacles around the vehicle without blind spots and grasp
their relative orientations and distances. In this way, the occur-
rence of scraping, collision and other accidents can be avoided
effectively. Besides, the surround-view also plays an important
role in multiple computer vision tasks [3] towards driving assis-
tance, such as parking-slot detection [4], [5], autonomous park-
ing [6], [7], pedestrian detection [8], [9] and so on.

To synthesize high-quality surround-views, the accurate in-
trinsics and extrinsics of cameras in the SVS are indispensable.
At present, the performance of intrinsic calibration schemes is
relatively satisfactory. The manufactures can complete the cam-
eras’ manufacturing and intrinsic calibration in a streamlined
manner. In addition, since the cameras are always tightly en-
capsulated, the intrinsics will usually remain fixed after the pro-
duction of cameras. Therefore, the intrinsic re-calibration is not
frequently required in most cases. Relatively speaking, the tech-
niques for extrinsic calibration are still not mature yet to meet
the demands in use. The existing schemes for extrinsic calibra-
tion mainly fall into two categories, the manual ones [10]–[15]
and the self-calibration ones [16]–[22], and their limitations are
mainly manifested in the following two aspects:

1) Although the existing manual calibration schemes often
preform reliably, most of them are cumbersome and
labor-consuming. When these methods are utilized, the
vehicle needs to be driven by professionals to a specific
calibration site, and then the calibration can be com-
pleted using the patterns with the known-scale regularly
arranged in the site. It can be seen that except for the high
labor cost, these methods also have specific restrictions
on the working environment. As aforementioned, due to
collisions or bumps, sometimes the extrinsics of the SVS
may change, which leads to the result that the manual
schemes can only work with the professional assistance
in an offline manner, and are not applicable for the online
environment during driving.
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2) The existing self-calibration schemes generally have in-
herent limitations with respect to the robustness and the
stability. This is easy to understand given that they mostly
heavily rely on low-level geometric features on the ground,
such as pixels, points, and lines, and estimate the extrin-
sics based on the relatively ideal mathematical model. On
the one hand, such low-level features are sensitive to the
natural noise and the accuracy of the system will evidently
decline in nonideal environments. On the other hand, some
features (such as lines) are not widely available in the natu-
ral environment. Without required features on the ground,
the corresponding self-calibration methods will fail.

On account of the limitations aforementioned, as far as we
know, there is still no existing extrinsics self-calibration scheme
specially designed for the SVS that can be stably applicable
in various environmental conditions. In most commercial so-
lutions, drivers have to drive to 4S stores for calibration or
re-calibration by professionals. This is undoubtedly troublesome
for both customers and automobile manufacturers. Thus, many
manufacturers are now looking for effective self-calibration
schemes. As an attempt to fill in this research gap to some ex-
tent, we propose a novel weakly-supervised scheme towards the
extrinsics self-calibration of the SVS. In summary, our contri-
butions are mainly threefolds:

1) A weakly supervised network for extrinsics calibration of
the SVS, namely WESNet, is proposed. Based on the prior
knowledge learned from the training data, WESNet can
yield the extrinsics of the SVS in an end-to-end manner
with the input of original fisheye images. Since it is dif-
ficult to obtain the accurate extrinsics as the ground truth
(GT), we do not directly label the training samples with
the corresponding GT extrinsics for fully supervised learn-
ing, but instead follow a weakly supervised framework.
Specifically, the corner information in the calibration site
images (collected over the calibration site) is taken as the
geometric supervision, and in the first stage of training, the
network is optimized by minimizing the geometric loss.

2) A novel photometric loss as self-supervised information is
designed, so as to mine more supervision information from
the training images themselves. Inspired by Zhang et al.’s
scheme in [21], OECS, we model the imaging discrep-
ancy in the common-view regions of adjacent cameras in
the SVS as the photometric loss, and expect to minimize
this loss as much as possible so as to synthesize seam-
less and high-quality surround-views. When the training
fully based on the geometric supervision converges, the
self-supervised photometric loss will be introduced to
fine-tune the network to further improve the estimation
accuracy, which is what our second stage of training is
for.

3) To facilitate the study of the extrinsics calibration or any
other computer vision tasks relying on the surround-views,
we collected a large-scale surround-view dataset cover-
ing a variety of environmental conditions. Such a dataset
contains 19,078 groups of high-resolution fisheye-images
and the corresponding surround-views synthesized under
different environmental conditions, covering the ground
with several kinds of lane-lines and tiles, the cement road,
the narrow path, and the road exposed to strong sunlight.

Besides, a data augmentation method based on the ho-
mography transformation is also proposed, for the sake of
improving the richness of the extrinsics of collected data.
It is worth mentioning that, to our knowledge, this is the
largest surround-view dataset containing original fisheye
images. To make our results reproducible, source code and
the collected dataset in this paper are online available at
https://cslinzhang.github.io/WESNet/WESNet.html.

The remainder of this paper is organized as follows. Section II
introduces related studies. Section III makes an overview of the
imaging principle of the SVS. Section IV and V present our
proposed network, WESNet, and the collected dataset in detail,
respectively. Experimental results are reported in Section VI.
Finally, Section VII concludes the paper.

II. RELATED WORK

A. Extrinsics Calibration of the Surround-View System

To synthesize a surround-view image, the SVS needs to be
both intrinsically and extrinsically calibrated. Since the intrin-
sics calibration is relatively mature and can satisfy the industrial
requirements in most cases, in this paper, we mainly focus on
the aspect of extrinsics. Based on whether the calibration can be
conducted automatically, existing extrinsics calibration methods
are mainly divided into two categories, the manual ones and the
self-calibration ones.

1) Manual Calibration Methods: In manual calibration
methods, specific patterns, such as corners, circles or lines, are
necessary so as to offer the reference information. These patterns
are usually repeatedly and equidistantly printed on the calibra-
tion site or some portable reference targets like the chessboard,
and the coordinates of each pattern in the world coordinate sys-
tem can be easily obtained. The driver needs to park the vehicle
equipped with the SVS at the appropriate position, and then cap-
tures the calibration site images. After that, the extrinsics can be
solved by establishing the mapping relationships of patterns be-
tween the pixel coordinates and the world coordinates.

In [10], Liu et al. firstly proposed the basic theoretical model
of the SVS, pointing out that the mapping relationship between
the undistorted fisheye image and the surround-view can be de-
termined by homography estimation. However, the author did
not offer a specific calibration pipeline. In fact, as far as we
know, at that time, the SVS was still in the early stage where the
tiles of fixed size on the ground were usually considered as the
simple calibration patterns, which was undoubtedly unsatisfac-
tory in the accuracy. In [11], Hedi et al. presented a two-stage
offline calibration pipeline. In its first stage, the vehicle was
parked on the calibration site filled with the chessboard markers.
Then the extrinsics were roughly estimated via the homography
estimation. After that, an optimization approach to minimize
the stitching loss was conducted, which was also the second
stage of the pipeline. Zhang et al.’s solution proposed in [12]
is a calibration-chart-based approach, which utilized Harris cor-
ners [23] and BRIEF descriptors [24] to find paired features
between the calibration-chart and the collected calibration site
images. One eminent feature of their work is that except for
the geometric alignment, photometric alignment was also in-
troduced. In the scheme presented by Shao et al. [13], insteadAuthorized licensed use limited to: TONGJI UNIVERSITY. Downloaded on June 09,2023 at 07:52:09 UTC from IEEE Xplore.  Restrictions apply. 
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of driving the vehicle to a fixed position in a specific calibra-
tion site, a single chessboard was the only demand. And a novel
refinement procedure that jointly optimized camera poses in a
closed-loop manner was adopted. In recent years, a new vari-
ant of the SVS, 3D SVS, has attracted a lot of research interest
and the studies on extrinsics calibration of the 3D SVS natu-
rally emerged, such as Gao et al.’s work [14] and Zhang et al.’s
one [15]. Actually, these methods are not significantly different
from the aforementioned schemes designed for the conventional
SVS in the calibration aspect. Specifically, Gao et al.’s solution
is based on the calibration site printed with chessboard mark-
ers, and Zhang et al.’s one relies on the calibration chessboard,
which are similar to the designs in [11] and [13], respectively.

With the assistance of calibration patterns, manual calibration
methods often perform satisfactorily in both the stability and the
accuracy. However, such calibration approaches usually need to
be operated by professionals in specific sites, which causes high
cost of manpower and materials. Besides, since these methods
can only be applicable to the off-line environment, once the
camera poses in the SVS changes due to collisions or bumps, the
extrinsics obtained by the initial manual calibration will become
inaccurate, and obvious geometric misalignment will appear in
the synthesized surround-view.

2) Self-Calibration Methods: The self-calibration schemes
are independent of the specific calibration patterns, and can re-
cover the extrinsics only from the images taken in natural scenes,
which effectively reduces the labor cost. In [16], Zhao et al.
first detected multiple vanishing points of lane markings on
the road via the weighted least squares method, and then with
the estimated vanishing points, the pose of the multi-camera
system relative to the world coordinate system was solved.
In [17], Choi et al. also designed a lane-line based extrinsics
self-calibration pipeline for the surround-view case, in which
the SVS was calibrated by aligning lane markings across im-
ages of adjacent cameras. It can be seen that the aforementioned
self-calibration frameworks both made an assumption for the
target application environment, that is, there must be two paral-
lel lane-lines clearly observed in the field of view. However, this
is an assumption that cannot usually be satisfied. For example,
lane-lines on the ground may be crooked and faded, or the car is
likely to run on a rural path without lane-lines. Heng et al. [18],
[19] resorted to visual SLAM systems to calibrate the extrin-
sics of the SVS and proposed an infrastructure-based pipeline.
In their pipeline, there are no specific limitations on the ap-
plication scope; however, the vehicle equipped with the SVS
needs to travel in the calibration area for a while to establish
the map, which is quite time-consuming and unlikely to satisfy
the industrial portability requirement. Inspired by them, more
and more studies trying to solve the task of camera pose estima-
tion in multi-camera systems based on SLAM [26], [27] have
emerged recently, but they can hardly be extended to SVS, which
is also the reason why some solutions of camera calibration
based on stereo images [28], [29] don’t meet our requirement.
As far as we know, the only three existing relatively lightweight
self-calibration schemes which are applicable to the SVS are
Liu et al.’s method [20] and Zhang et al.’s [21], [22]. They
all deeply dissected the online extrinsics correction problem
and offered effective solutions. In [20], Liu et al. proposed two

models, namely the “Ground Model” and the “Ground-Camera
Model”, and both of them could correct extrinsics by minimiz-
ing photometric errors with the steepest descent [25]. In [21],
Zhang et al. designed a novel model, the bi-camera model, to
construct the least-square errors [30] on the imaging planes of
two adjacent cameras and then optimize camera poses by the
LM (Levenberg-Marquardt) algorithm [31]. And they further
improved their work in [22] by utilizing multiple frames se-
lected and stored in a local window rather than a single frame to
build the overall error, so as to improve the system’s robustness.
Since the above three studies [20]–[22] focused on the “online
correction” rather than the “calibration,” a rough initial extrin-
sics needed to be offered to them as the input.

At present, most of the existing self-calibration methods
can only utilize the low-level features, such as pixels, key-
points [32]–[34] or lines, to solve the extrinsics by aligning
the features on different views. As discussed in Section I, these
methods usually perform satisfactorily in ideal environments,
but may fail without required textures on the ground. Compared
with them, our proposed solution WESNet in this work follows
a weakly supervised learning framework. Without any prior, it
can effectively extract deep-level features and yield the accurate
extrinsics end-to-end.

B. Learning-Based Calibration of the Camera System

In recent years, deep learning has shown superior performance
in various computer vision tasks. Towards the calibration prob-
lem of camera systems, which is a classical task in the machine
vision field, more and more learning-based solutions were pro-
posed. In [35], Workman et al. proposed to regress the intrinsics
of the camera directly from a single-shot via a convolutional neu-
ral network (CNN), namely FocalNet. Giering et al.’s approach
in [36] is also an end-to-end CNN-based scheme, which took
a multi-modal input including the point clouds from LiDAR,
the optical flow maps and the RGB images. By solving a 9-class
classification problem where each class corresponded to a partic-
ular x-y shift on an ellipse, the real-time lidar-video registration
could be realized. In [37], Schneider et al. designed a network
named RegNet, which is the first deep learning based work to-
wards the extrinsics calibration of the LiDAR-camera system.
Since it doesn’t take geometric relationships into account, it has
to be retrained each time the sensor intrinsics change. In contrast,
the method presented in [38], namely CalibNet, deals with the
problem in a weakly-supervised manner by attempting to reduce
the dense photometric error and the point cloud distance error
between the misaligned and the target depth maps. Despite some
learning-based calibration schemes have been proposed, as far
as we know, none of them are applicable to the surround-view
case. Besides, most of the existing schemes are fully supervised,
and the GTs are from traditional offline calibration solutions,
implying that the accuracy of the trained networks is limited.
For the consideration of the aforementioned limitations, our pro-
posed WESNet, which is specially designed for the SVS, follows
a weakly supervised framework. During its training phase, rather
than generating GTs via existing offline calibration schemes, we
take the re-projection loss of corners on the calibration site im-
ages as the weak supervision information. In addition, a novel
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photometric loss is also introduced as the self-supervision infor-
mation to further improve the performance of the network.

III. OVERVIEW OF THE SURROUND-VIEW SYSTEM

This section describes the imaging process of a surround-view
system, i.e., how to generate a surround-view from images cap-
tured by the cameras mounted around the vehicle. To synthesize
a surround-view image, the mapping relationship of a point be-
tween its pixel coordinates on the original fisheye image and
those on the bird’s-eye-view should be established. Since such a
relationship is relatively complex, we divide it into two parts, the
mapping relationship from the pixel coordinates on the fisheye
image to the ground coordinates and that from the 3D ground
coordinates to the pixel coordinates in the bird’s-eye-view. Next,
we will introduce these two parts in detail.

Given the ground coordinate system OG and a four-camera
SVS (cameras are represented as C1, C2, C3, and C4), the poses
of cameras in OG are denoted by TC1G, TC2G, TC3G, and
TC4G, respectively. The pose matrix TCiG is 4×4 and of 6
DOF (Degrees of Freedom), which can be expressed as,

TCiG =

[
Ri ti

0T 1

]
, i = 1, 2, 3, 4 (1)

whereRi is an orthonormal 3×3 rotation matrix withdet(Ri) =
1 while ti is a three dimensional translation vector.

For the transformation from the ground coordinate system to
the coordinate system of the undistorted image, we formulate it
with the pinhole camera model. Given an arbitrary point in the
ground coordinate system PG = [XG, YG, ZG, 1]

T in OG, its
corresponding pixel coordinate pCi

on the imaging plane of Ci

is given by,

pCi
=

1

ZCi

KCi
TCiGPG, i = 1, 2, 3, 4 (2)

whereZCi
is the depth ofPG in cameraCi’s coordinate system,

and KCi
is the 3×3 intrinsic matrix of camera Ci, which can

be estimated together with the distortion coefficient matrix by
Zhang’s salient work [39] and some subsequent work of oth-
ers [40], [41]. Concretely, the form of KCi

is

KCi
=

⎡
⎢⎣fx 0 cx

0 fy cy

0 0 1

⎤
⎥⎦ (3)

where fx, fy , cx, and cy are camera intrinsic parameters. And
it’s worth noting that pCi

is an undistorted point.
Compared with the above model, the transformation from the

bird’s-eye-view coordinate system to the ground coordinate sys-
tem is much simpler, which is essentially a similarity transforma-
tion. The bird’s-eye-view image can be generated by projecting
a camera image to the ground, namely the plane ZG = 0 in OG.
For a point pG = [uG, vG, 1]

T in the bird’s-eye-view coordinate

system whose corresponding point in the ground coordinate sys-
tem is PG, the transformation between them is given as,⎡

⎢⎣uG

vG

1

⎤
⎥⎦ =

⎡
⎢⎢⎣

1
dXG

0 W
2dXG

0 − 1
dYG

H
2dYG

0 0 1

⎤
⎥⎥⎦

⎡
⎢⎣XG

YG

1

⎤
⎥⎦ (4)

where XG, YG, and ZG are the coordinate values of PG, dXG

and dYG
denote the size of each pixel2, and W and H are the

width and height of the scope covered by the surround-view
image. Since that ZG = 0, it is ignored implicitly here. Denote
the transformation matrix from PG to pG by KG, and then (4)
can be simplified as,

pG = KGPG (5)

By combining (2) and (5), we can get,

pCi
=

1

ZCi

KCi
TCiGK

−1
G pG (6)

With (6), we are able to establish a complete mapping between
pG on the bird’s-eye-view and pCi

in the undistorted imaging
plane of Ci. With such a bijective relationship, considering each
point pG in the bird’s-eye-view image IGCi

captured by camera
Ci, its corresponding pixel value can be obtained by,

IGCi
(pG) = ICi

(pCi
) (7)

where ICi
is the undistorted image captured by cameraCi. Map-

ping the images captured by cameras C1, C2, C3, and C4 to
bird’s-eye-views and then stitching them appropriately, a com-
plete surround-view image can be synthesized.

IV. WEAKLY SUPERVISED CAMERA EXTRINSICS ESTIMATION

With accurate extrinsics, seamless surround-view images can
be synthesized at runtime. However, as discussed in Section I,
manual calibration schemes are usually laborious so that they
can’t be applied in the online manner, and off-the-shelf self-
calibration schemes perform unsatisfactorily in the robustness
and the generalization. To provide a robust and lightweight solu-
tion for the extrinsics calibration of SVS, in this paper, we pro-
pose a learning-based solution following the weakly supervised
framework for camera extrinsics’ estimation. Such a scheme
is based on an end-to-end lightweight CNN, namely WESNet,
which can yield the extrinsics directly from four input fisheye
images captured synchronously by the cameras mounted around
the vehicle. Under the weakly supervised framework, we mainly
leverage the re-porjection loss of the corners of the calibration
site instead of labelling every image in the dataset with its cor-
responding GT extrinsics.

Training with the weak supervision information, WESNet can
offer a rough extrinsics estimation but the accuracy is still insuf-
ficient. To mine more information from the training data them-
selves, we also introduce the self-supervised photometric loss to
fine-tune the network after the weakly supervised loss converges.
Thus, the accuracy of the network can be further improved so as
to synthesize seamless surround-views.

2More accurately, each pixel in the surround-view image corresponds to a
dXG

× dYG
physical area on the ground plane.
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Fig. 1. The network architecture of WESNet. As illustrated in the figure, the parallel layer extracts deep-level features from four input images independently,
and then the concatenate layer fuses the features from different images. Finally, the global aggregation layer maps the concatenated features to a 48-dimensional
vector which stands for the extrinsics of the SVS. “s2” here means that the stride of the corresponding convolution operation is 2 while the default value is 1.

A. Network Architecture

The basic architecture of WESNet is designed mainly fol-
lowing the advice of regression frameworks for calibration [37],
[38] as well as the common knowledge in CNN area. Fig. 1 il-
lustrates its configurations. Here, a residual bottleneck [42] with
a 3×3 convolution followed by a 1×1 one is used as the basic
building block.

As shown in Fig. 1, the parallel layer independently extracts
deep-level features from each input fisheye image. Then the fea-
ture maps from multipath will be concatenated together so as
to fuse the extracted features from different views. Finally, the
global aggregation layer, which consists of both convolutional
layers and fully connected layers, will map the aggregated fea-
tures to the extrinsics. As mentioned in (1), these extrinsics are
formulated in the transformation matrix form, and for each cam-
era, nine rotation parameters and three translation ones need to
be regressed. Thus, WESNet will yield a 48-dimensional vector
to represent the extrinsics of the SVS.

B. Loss Function

The loss function of WESNet is defined as the composition
of three loss terms, the geometric loss, the orthogonal loss and
the photometric loss, which is given as,

Loss = Lossgeo + αLossortho + βLosspho (8)

where Lossgeo is the geometric loss, Lossortho stands for the
orthogonal loss, and Losspho refers to the photometric loss.
The hyper-parameters are set to α = 0.1 and β = 0.15. The ge-
ometric loss is actually the weakly supervised loss, which can
promote the convergence of the network, while the photomet-
ric loss is to fine-tune the network so as to synthesize seamless
surround-views. Besides, an orthogonal loss is also integrated to
keep the internal constraints of the estimated rotation matrices.
Next, we will introduce these three loss terms in detail.

1) Geometric Loss: As we know, the limitation of fully su-
pervised learning is that its performance strongly depends on the
accuracy of labels, while in the task of extrinsics calibration, it
is difficult to obtain accurate GTs. Therefore, we do not take the
extrinsics estimated by existing calibration solutions as direct

Fig. 2. Illustration of the geometric loss. For each selected corner pCi
on

the undistorted calibration site image, whose corresponding point in the ground
coordinate system is PG, its geometric loss is constructed as the coordinates’
differences between pCi

and the point projected from PG to the undistorted
image plane of Ci with estimated extrinsics by (2).

labels, but utilize the geometric relationships in the calibration
site images as weak supervision information to construct the
geometric loss guiding the optimization of WESNet, so as to
avoid its performance being limited by inaccurate supervision.
We first collected the calibration site images over the calibration
site filled with chessboard markers. With the known sizes of
these markers, the 3D coordinates in the world coordinate sys-
tem of each marker can be easily obtained. Based on the pairs
of 3D world coordinates of corners and corresponding manu-
ally labelled 2D pixel coordinates in calibration site images, we
form the re-projection loss to geometrically regress the output
extrinsics from images collected under the same extrinsic con-
figurations. To help understand, the sketch of the geometric loss
is illustrated in Fig. 2.

Given a selected corner on the calibration site, the relationship
between its 3D coordinate PG in the ground coordinate system
OG and its 2D pixel coordinate pCi

on the undistorted fisheye
image collected by camera Ci has been given in (2). Thus, with
the yielded camera pose of WESNet, a corresponding projection
p′
Ci

can be generated and a loss term can be established, which
is the distance between pCi

and p′
Ci

. By summing up the error
terms of all corners, we obtain the overall geometric loss of
WESNet, which is given as,

Lossgeo =
∑
i

∑
PG∈Pi

∥∥norm(pCi
− p′

Ci
)
∥∥
2
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=
∑
i

∑
PG∈Pi

∥∥∥∥norm(pCi
− 1

ZCi

KCi
TCi

PG)

∥∥∥∥
2

(9)

where i stands for the index of the camera in the SVS, ranging
from one to four, P i stands for the set of all selected corners
on the calibration site that can be seen by camera Ci, the func-
tion norm(∗) normalizes the re-projected pixel coordinates by
dividing its coordinate on the corresponding axis with the width
or the height of the image, respectively.

It’s worth mentioning that the ground coordinate system
should be determined manually. A common solution is to park
the vehicle at an appropriate position over the calibration site to
align the vehicle coordinate system and the ground one. From
this perspective, except for labelling the training data in a weakly
supervised manner, the geometric loss also offers an absolute
reference to guarantee the convergence of the network. Specif-
ically, by introducing the geometric loss, WESNet can learn to
determine a specific ground coordinate system and to regress
poses of different cameras in a unified reference system.

2) Orthogonal Loss: The rotation matrix consists of nine pa-
rameters but its DoF is only three, implying a strong internal con-
straint. Since it’s difficult to solve the constrained optimization
problem, we choose a relatively soft solution, that is, introduc-
ing the orthogonal loss to keep the constraint satisfied along with
the training process. Motivated by [43], the orthogonal loss is
defined as,

Lossorg =
∑
i

3∑
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2 (10)

where Ri
jk is the element in the jth-row and the kth-column of

the rotation matrix Ri of Ci.
3) Photometric Loss: Training only with the geometric loss,

the network can converge to a barely satisfactory level. However,
the results are still not accurate enough, and there will usually be
obvious geometric misalignments in the synthesized surround-
views. To further improve the performance of the network, we
introduce an extra self-supervised photometric loss. The sketch
of this photometric loss is illustrated in Fig. 3.

When the extrinsics are absolutely accurate, the grayscale
values of the adjacent cameras’ imaging pixels of the same point
tend to be consistent. Based on such an assumption, given a point
pG on the surround-view in the common-view region of camera
Ci and Cj , we define the corresponding photometric loss term
εpG

as,

εpG
= IGCi

(pG)− ρijIGCj
(pG) (11)

where IGCi
and IGCj

are bird’s-eye-views of Ci and Cj , re-
spectively. With the preliminaries given by (6), (11) can also be

Fig. 3. Illustration of the photometric loss. It represents the grayscale differ-
ence of adjacent cameras’ imaging pixels of the same point. It is introduced in
the second stage of training to fine-tune the network, so as to synthesize seamless
surround-views.

reformulated as,

εpG
= ICi

(
1

ZCi

KCi
TCiGK

−1
G pG

)

− ρijICj

(
1

ZCj

KCj
TCjGK

−1
G pG

)
(12)

where ρij is an exposure factor to weaken the negative impact
brought by the discrepancy on lighting conditions and environ-
mental reflections between different cameras. Actually, as dis-
cussed in [44], for an image taken of a physical object, except
for the properties of the object itself, the imaging pixel values
will also be determined by the exposure time, the vignette and
the non-linear response function of the camera. Among them,
the exposure time is the most important factor according to our
experience. Thus, we model the exposure factor ρij as,

ρij =
ti
tj

(13)

where ti is the corresponding exposure time of ICi
and tj is

that of ICj
. Even though the exposure time can’t be obtained

directly in general, the factor ρij can be fitted as,

ρij =

∑
pG∈Oij

IGCi
(pG)∑

pG∈Oij
IGCj

(pG)
(14)

where Oij is the set of all pixels in the common-view region of
Ci and Cj on bird’s-eye-view images.

To improve the robustness to outliers, we adopted the l1 loss.
In this way, by summing up the l1-norm of photometric loss
terms of all qualified points, the overall photometric loss can be
obtained as,

Losspho =
∑

(i,j)∈Aij

∑
pG∈N ij

|εpG
| (15)

where Aij is the set of all adjacent cameras’ indices, and N ij

is the set of all selected qualified pixels in the common-view
region of Ci and Cj . More details regarding pixel selection can
be found in Section IV-C.
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C. Implementation Details

1) Pixel Selection: Our pixel selection strategy follows the
criteria that each qualified pointpG’s intensity gradient modulus
G(pG) should be large enough so as to keep the stability of the
feature it can offer. Specifically,

G(pG) ≥ 2Gmean + σg (16)

where Gmean is the mean gradient modulus over Oij , and σg is
the associated standard deviation.

Besides, as discussed in Section III, for any point pG on
the surround-view, it is assumed to be on the ground. How-
ever, some objects with non-negligible heights, such as pedes-
trians, lawns or curbs, may appear in the surround-view and
break such a preliminary. For ease of representation, we call
these objects as “mismatched objects” and the corresponding
pixels as “mismatched pixels”. Constructing the photometric
loss with mismatched pixels may do harm to the final accuracy
since such pixels do not follow the imaging model of the SVS.
Thus, such pixels should be eliminated in the pixel selection ap-
proach. Motivated by [21], we adopted a color based strategy.
Specifically, for any qualified point pG, the color discrepancy
between IGCi

(pG) and IGCj
(pG) is supposed to be unobvi-

ous. Defining Ic
GCi

and Ic
GCj

as the maps of IGCi
and IGCj

of
channel c, respectively, we measure the color discrepancy with
the standard deviation of pG’s color ratios in different channels,

Dcolor (pG) =

√∑nc

c=1 (rc (pG)− rμ (pG))
2

nc
(17)

where nc is the number of channels (normally 3) and rμ(pG) re-
turns the average of all pG’s color ratios. The color ratio rc(pG)
is defined as,

rc (pG) =
Ic
GCi

(pG)

Ic
GCj

(pG)
(18)

For any qualified pG, it must satisfy,

Dcolor (pG) < Dmean − 2σd (19)

where Dmean is the average color discrepancy of all the points
in Oij and σd is the associated standard deviation.

2) Derivatives of the Photometric Loss: During the back
propagation of the network, the derivation of the aforementioned
three types of losses to the yielded extrinsics is necessary. Dif-
ferent from the geometric loss and the orthogonal one, there is
no perfect analytical solution of the derivatives of the photo-
metric loss, thus some approximations are necessary. Take the
derivative δ of the photometric loss term εpG

to the pose ma-
trix TCiG as an example. The corresponding derivative δ can be
decomposed into multiple simpler parts via the chain rule,

δ =
∂εpG

∂ICi

· ∂ICi

∂pT
Ci

· ∂pCi

∂P T
Ci

· ∂PCi

∂TCiG

=
∂ICi

∂pT
Ci

· ∂pCi

∂P T
Ci

· ∂PCi

∂TCiG
(20)

where pCi
is the projection of pG on the undistorted image ICi

and PCi
is the corresponding point in the camera coordinate

system of Ci. The analytical solutions of the latter two terms

can be derived easily, but not the first one. In [45], Irani et al.
offered a general solution, that is utilizing the gradient of image
intensities at pCi

for approximation. In our implementations,
to calculate the derivatives under the framework of neural net-
work efficiently, every time after the forward propagation, we
linearize the photometric loss term εpG

at the current projection
p̂Ci

with the differentiable bilinear sampling and ICi
(pCi

) is
reformulated as,

ICi
(pCi

) =
∑

pt∈N (p̂Ci
)

ωt · ICi
(pt) (21)

where N (p̂Ci
) is the set of all neighboring points near p̂Ci

,
and ωt is linearly proportional to the spatial proximity between
p̂Ci

and pt. Thanks to the reformulation, the undifferentiable
term ICi

(pCi
) is converted to a differentiable one, and the back

propagation of WESNet can be efficiently conducted under the
auto-differential framework.

V. SURROUND-VIEW DATASET

Since there’s no existing large-scale surround-view dataset
containing original fisheye images, we collected our own dataset
by an electric car equipped with four cameras mounted around,
which is mainly composed of two parts, calibration site images
and natural ones. It is worth emphasizing that both parts of our
dataset are publicly available. The calibration site images were
collected over the calibration site to provide weak supervision
information, while the natural ones, which act as training and
testing sets, were taken from natural scenes. For the relation be-
tween the chessboard corners in calibration site images and nat-
ural images, in the training phase, both kinds of data provide us
with the necessary supervision signal. Specifically, chessboard
corners offered us the required geometric supervision while nat-
ural images offered the photometric one. Hence, in the inference
process, our network only takes the natural images as input to
complete the extrinsics’ estimation and has no dependence on
the chessboard corners. And the original resolutions of all col-
lected images are 1280×1080.

A. Calibration Site Images

As aforementioned, the calibration site images were taken
over a calibration site. The calibration site is located on a flat
field with 10×10 chessboard grids printed on it, and the size
of each grid is 1m× 1m, as shown in Fig. 4. We parked the
vehicle to a designated position where the midpoint of rear axle
of wheels was five meters horizontally and six meters vertically
from the upper left corner of the calibration site. Designating
this midpoint as the origin, the world coordinate system was
established and the 3D world coordinates of each chessboard
corner could be easily obtained.

B. Natural Images

The natural images form our training and testing data. In
practical application, to reduce manpower and time cost, we ex-
pect that the cameras can be calibrated while the vehicle drives
on the normal ground rather than the specific calibration site,
so we take natural images as the input of our network, which is
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Fig. 4. Illustration of the calibration site and how to establish the world coordi-
nate system. Over the site, calibration site images, which offer weakly supervised
information, are collected.

TABLE I
QUANTITIES OF NATURAL IMAGES COLLECTED UNDER DIFFERENT

ENVIRONMENTAL CONDITIONS

consistent with our actual application scenario. Moreover, the
natural images themselves also provide a self-supervised photo-
metric loss term, so that we can get the seamless surround-view
image. We simulated the driving in reality and collected a
large number of images in the natural environment on campus,
namely natural images for short. The data we collected covers
a variety of common environments, including the ground with
different lane-lines and tiles, the cement road, the narrow path,
and the road exposed to strong sunlight. In addition, due to the
obvious difference between the underground environment and
the above outdoor scenes, we also collected data from three
underground parking-sites with different scales. Some typical
examples of different categories are shown in Fig. 5 while the
specific quantities of images are given in Table I.

C. Data Pre-Processing

Preparing for the training, the collected data needs to be
pre-processed, including labelling and data augmentation. With
respect to labelling, we recorded the pixel coordinates and the
corresponding 3D world coordinates of the manually selected
corners in the calibration site images as weakly supervised la-
bels. For each frame, about 20∼30 corners were chosen. It is
worth noting that this is the only necessary manual operation
in our scheme. For data augmentation, in reality, the extrinsics
of the SVS equipped by different vehicles usually vary, thus
the collected data should cover extrinsics as widely as possi-
ble. However, it is quite time- and labor-consuming to expand
the diversity of extrinsics of the dataset by manually adjusting

TABLE II
HARDWARE CONFIGURATIONS OF THE COMPUTATION PLATFORM

TABLE III
MAIN SOFTWARE CONFIGURATIONS OF THE COMPUTATION PLATFORM

the camera poses repeatedly and then collect data under differ-
ent extrinsic configurations for many times. Therefore, in our
practice, the extrinsics of cameras were always fixed during the
collection, while the homography transformation was applied
to improve the richness of the extrinsics of collected data. Con-
cretely, we applied the homography transformation to the nor-
malized planes of undistorted images and then distorted them
again to synthesize fisheye images corresponding to new extrin-
sics. Fig. 6 shows an example of the fisheye image before and
after the augmentation.

In our implementation, the rotation disturbance was within
±0.2 rd (about ±11.5 degrees), with an interval of 0.05 rd while
the translation disturbance was within ±0.2˜m, with an interval
of 0.05m. Finally, the extrinsic settings were augmented into
nine different types, and a dataset containing 171,702 groups
of images (each group consists of four fisheye images collected
synchronously) was established. Considering that the similarity
between consecutive video frames is relatively high, we take the
first 90% of video frames in V0 ∼ V5 settings as the training
set and the last 10% as the testing set instead of using a random
sampling strategy.

It is worth mentioning that we can transform the labeling
information corresponding to the original calibration site images
to generate that for augmented data instead of manually labeling
it, so that the data augmentation is fully automatic.

VI. EXPERIMENTAL RESULTS

A. Experiment Setup

All experiments in this paper were conducted on the same
desktop computer, and its detailed hardware and software con-
figurations are shown in Table II and Table III, respectively. The
training and evaluation codes of WESNet were implemented
using PyTorch [46]. Before training, all the input images were
resized to 512×512. During training, we initialized the weights
of all neural network layers randomly and used Adam opti-
mizer [47] with 10−4 as the initial learning rate. Finally, we
trained our network with the batch size of 16 for 20 epochs.

B. Qualitative Experiment

1) Traits of the Methods: As we have reviewed in Section II,
there are several studies in the literature that are relevant to WES-
Net. In order to understand the different characteristics of these
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Fig. 5. Typical samples of natural images collected under different environments. The shown images are all captured by the front camera. From (a)∼(f), the
samples are selected from groups V0∼V5, respectively.

Fig. 6. An example of synthesizing fisheye images based on our proposed
data augmentation pipeline. (a) is the original fisheye image, and (b) is the
augmented result, which can represent the fisheye image under a new extrinsics’
configuration.

methods more clearly, in Table IV we compare them in three as-
pects: 1) Does it require the prior information of extrinsics? 2)
Does it belong to manual calibration schemes or self-calibration
ones? and 3) What kind of objects assisting calibration does it
rely on? It can be seen that Liu et al.’s method [20], OECS [21],
ROECS [22] and our scheme, WESNet, can yield the extrinsics
of the SVS just from natural images. Among them, WESNet
does not need any prior information of the extrinsics, implying a
wider application scope. It’s worth mentioning that Heng et al.’s
schemes [18] and [19] also rely on natural images. However, as

TABLE IV
QUALITATIVE COMPARISON WITH RELATED METHODS

mentioned in Section II, since a large quantity of frames are re-
quired for their SLAM systems to converge, these two schemes
are quite cumbersome. By contrast, our WESNet takes a sin-
gle group of frames collected by the SVS synchronously as the
input, corroborating its lightweightness.

2) Typical Samples of Synthesized Surround-Views: In or-
der to qualitatively examine the performance of WESNet, we
compared it with three representative competitors, including the
manual calibration scheme [13] and the self-calibration one,
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Fig. 7. Comparisons of the surround-views synthesized with yielded extrinsics of WESNet and two representative competitors. In each row, from left to right
the surround-views are generated by Shao et al.’s scheme [13], OECS [21], and WESNet, respectively.

OECS [21] on our testing set. Some typical samples of the
surround-views synthesized with the yielded extrinsics of our
scheme and these two competitors are shown in Fig. 7. From
Fig. 7, it can be clearly seen that there are often geometric
misalignments of different severity in the surround-views syn-
thesized by Shao et al.’s scheme [13]. The reason accounting
for this phenomenon is that with Shao et al.’s scheme [13],
the offline calibration is only conducted over the calibration
site, and is not adaptive to some naturally occurring interfer-
ence factors, such as the change of the tire pressure or the
vehicle load. Apart from that, such a scheme utilizes only a
limited number of corners during the calibration, and hence
it suffers from the sensitivity to labelling impreciseness of se-
lected corners. In contrast, OECS [21] works well on the ideal
road surface with clear textures, such as Fig. 7(b). However,
it only uses a single frame and strongly relies on the imaging
hypothesis of the SVSs. When the road surface is uneven (as
shown in Fig. 7(e) and (h)) or there are obvious objects with
non-negligible heights (as shown in Fig. 7(k)) in the surround-
view, it may underperform, implying its unsatisfactory robust-
ness. For WESNet, as aforementioned, since it can learn richer
and more general features from a large number of data thanks

to the superiority of the learning mechanism, in most cases,
it performs significantly better than those two competitors.
Fig. 7 also supports our claim.

C. Quantitative Experiment

1) Metrics: To measure the accuracy of the extrinsics esti-
mated by the compared methods, four metrics were employed
for evaluation, two absolute values and two relative ones. Specif-
ically, they are:

a) EARE , the absolute re-projection error. It is the distance
between the projections of 3D corners from the ground
coordinate system to the undistorted image plane with the
output extrinsics and the pixel coordinates of the corre-
sponding 2D points in undistorted calibration site images,
which is given by (9).

b) EAPE , the absolute photometric error. It is defined as (15)
to represent the grayscale difference between the corre-
sponding keypoints, which lay in the common-view re-
gions of the SVS.

c) ERRE , the relative re-projection error. As the accuracy of
offline calibration methods is generally satisfactory now,
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TABLE V
QUANTITATIVE COMPARISON WITH REPRESENTATIVE COMPETITORS

we take the absolute re-projection error over surround-
views synthesized with camera poses offline calibrated
by Shao et al.’s scheme [13] as the baseline, denoted by
Ebase
ARE . Given the absolute re-projection error of an evalu-

ated method E′
ARE , the relative re-projection error of this

method can be defined as ERRE = E′
ARE − Ebase

ARE .
d) ERPE , the relative photometric error. Similar to ERRE , de-

noting the absolute photometric error of the baseline and
that of a compared method by Ebase

APE and E′
APE , respec-

tively, the relative photometric error can be calculated by
ERPE = E′

APE − Ebase
APE .

It is worth mentioning that if the values of the two latter met-
rics are negative, it implies that the tested method is better than
the baseline.

2) Accuracy and Generalization: Over each group of data
collected from different environments, we tested the compared
methods with the metrics aforementioned, and reported the ex-
perimental results in Table V. The best results are highlighted
in bold. Additionally, in order to make a fair and comprehensive
comparison, for each performance metric, Table V also tabu-
lates the weighted-average errors of all methods over the whole
data groups. The weight assigned to each group depends lin-
early on the number of fisheye images contained in that group.
From Table V, it can be seen that compared with all counter-
parts, WESNet shows an overwhelming performance on nearly
all data groups. In the group V2 composed of samples of ce-
ment roads where WESNet is not the best, its results nearly
match OECS’s which is the best one. However, OECS’s lower
photometric errors on group V2 in fact are due to the “overfit-
ting” caused by the low-texture feature of group V2. Specifi-
cally, OECS takes only the photometric error as the guidance
to correct camera poses. However, in low-texture environment,
the photometric error is mainly determined by noise rather than

TABLE VI
TIME COSTS AND COMPUTATION PLATFORMS OF COMPARED METHODS

inaccurate poses of cameras. In this case, OECS can yield ex-
trinsics with low photometric errors but their accuracy can’t be
guaranteed. To conclude, the excellent accuracy of extrinsics es-
timation and the generalization capability of WESNet has been
nicely demonstrated.

3) Robustness to Intrinsic Disturbance: To evaluate the ro-
bustness of WESNet to the accuracy of the intrinsics, we first in-
troduced varying degrees of disturbance to the offline calibrated
intrinsics of each camera in the SVS. The disturbance can be
represented as an intrinsics’ disturbance factor d and we added
it to the focal length of the camera. Accordingly, the disturbed
intrinsic matrix Kd

Ci
of camera Ci can be expressed as,

Kd
Ci

=

⎡
⎢⎣fx + d 0 cx

0 fy + d cy

0 0 1

⎤
⎥⎦ (22)

Then under different d’s settings and environmental conditions
we ran our scheme and recorded the corresponding ERREs and
ERPEs. The relationship between ERREs (or ERPEs) and the
settings of d is shown in Fig. 8. The figure illustrates that, as
long as d is lower than 8 pixels, the camera poses estimated by
WESNet are always more accurate than the offline calibrated
results. Based on our experience, the camera’s focal length vari-
ation caused by the natural collisions or bumps won’t exceed
5 pixels in general. Therefore, it can be concluded that WESNet
is robust to the variations of intrinsics.

4) Time Cost Analysis: Following a weakly supervised
framework, the repetitive workload in the calibration process is
greatly reduced, and accordingly WESNet shows the speed per-
formance far exceeding that of other competitors. To support our
claim, we summarized the time costs to complete the whole cal-
ibration process of evaluated methods, and the results and plat-
forms are reported in Table VI. From this table, it can be seen that
as a representative manual solution, Shao et al.’s method [13]
takes about two minutes to finish the task, which confirms our
claim that manual schemes are usually cumbersome. OECS [21]
and ROECS [22] can effectively correct imprecise extrinsics of
the SVS in an online manner, but a few seconds are still required.
Compared with them, as a lightweight CNN, WESNet can run
on GPU and regress the extrinsics end-to-end with a total time
cost of about 32.6ms, demonstrating its superior efficiency.

D. Ablation Study of Loss Terms

We demonstrate how loss terms in our framework affect the re-
sults by comparing WESNet with two networks trained with dif-
ferent loss terms on our dataset. Specifically, these networks are
1) GeoNet: The network trained with Lossgeo only; 2) PhoNet:
The network trained with Losspho only. Table VII provides the
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Fig. 8. ERREs and ERPEs under different disturbance factor d’s settings.
From (a)∼(f), the evaluations were conducted on groups V0∼V5, respectively.
The relationship between ERREs and different settings of d is shown as the
orange curve while that of ERPEs is shown as the green curve. The blue line is
the offline baseline.

TABLE VII
PERFORMANCE OF NETWORKS TRAINED WITH VARIOUS COMBINATIONS OF

LOSS TERMS ON OUR DATASET

TABLE VIII
QUANTITATIVE COMPARISON OF GEONET WITH WESNET ON CALIBRATION

SITE IMAGES

results of the evaluated variants in terms of the four metrics men-
tioned in Section VI-C on our dataset covering different envi-
ronments. For each metric, the best result is highlighted in bold.

From the results presented in Table VII, we make the follow-
ing observations. First, highly relying on the geometric loss,
GeoNet achieves performance comparable with WESNet in
EARE and ERRE . However, its evaluation results in EAPE and
ERPE are unsatisfactory, implying that the extrinsics are not ac-
curate enough for synthesizing a seamless surround-view. Sec-
ond, training with the photometric loss only, PhoNet delivers
significantly poor performance in all metrics. Indeed, it can’t
converge at all. The underlying reason is that the approximation
given in (20) guiding the optimization in the back propagation
works well when the extrinsics approach the accurate values,
otherwise this approximation is unreasonable. This also corrob-
orates our claim that the geometric loss can help with the fast
convergence. Third, thanks to our two-stage framework, WES-
Net exhibits clear performance advantages over all counterparts
with all errors reduced to a sufficiently low level. Under this
framework, the geometric loss is utilized in the first stage to
ensure relatively accurate extrinsics. Then the photometric loss
is introduced to fine-tune the network, which indeed improves
the accuracy of extrinsics to some extent according to the eval-
uation results in Table VII. These results lead us to express the
belief that the loss function of WESNet is well designed and
both the geometric loss and the photometric loss play essential
and effective roles in it.

Since GeoNet could generate good results on natural im-
ages, to show the comparison results more clearly, we have also
conducted quantitative and qualitative experiments to see how
GeoNet works on calibration site images compared with our
WESNet, and the experimental results are shown in Table VIII
and Fig. 9, respectively. The results of Shao et al. [13] (the
baseline) are also provided for reference. It can be seen that
GeoNet’s performance is comparable to the baseline since their
optimizations both mainly rely on re-projection errors. In addi-
tion, our WESNet outperforms GeoNet both quantitatively and
qualitatively on calibration site images, further demonstrating
the effectiveness of the loss function of WESNet.

E. Failure Case Analysis

By observing and analyzing the experimental results, we
found that the textures of the ground have an obvious influ-
ence on WESNet’s performance. On the one hand, when the
ground texture is weak, the information contained in the image
is relatively scarce. In this case, the impact of noise will be more
notable, and WESNet will not be able to extract high-quality
features in deep level, resulting in poor performance as shown
in Fig. 10(a). On the other hand, when the ground is filled with
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Fig. 9. Qualitative comparison of surround-views synthesized on calibration site images with extrinsics yielded by Shao et al. [13], GeoNet and WESNet,
respectively.

Fig. 10. Examples of failure cases. The synthesized surround-views are shown
on the left while enlarged local regions are on the right.

repetitive fine-grained textures, WESNet may also fail as shown
in Fig. 10(b). The underlying reason is that our training frame-
work, especially in its second stage with the photometric loss,
tends to align the adjacent views in the SVS. In the failure case
as illustrated in Fig. 10(b), the alignment may be “mismatched,”
implying the failure of the extrinsics estimation. Thus, it should
be emphasized that in order to make our WESNet work success-
fully, the vehicle needs to be parked on flat ground with clearly
observable and coarse grained textures.

VII. CONCLUSION

In this paper, we studied a practical problem, extrinsic self-
calibration for the surround-view system, emerging from the
field of ADAS. Following a weakly supervised framework, we
proposed a novel learning-based solution, namely WESNet. Tak-
ing the original fisheye images captured by cameras in the SVS as
the input, it can yield extrinsics end-to-end. During training, we
first optimize the network fully based on the weakly supervised
geometric loss for fast convergence, and then the self-supervised
photometric loss is introduced to further fine-tune the network.
With the two-stage training, seamless surround-views can be
synthesized with the yielded extrinsics. An outstanding merit
of WESNet is that, since the only required input is a single
group of natural fisheye images and the forward propagation
of the network can be completed within milliseconds, it does
not require additional apparatuses or calibration sites and can
be easily applied in the online manner. As long as the vehicle
is driving on a normal flat road with relatively rich textures,
WESNet will work. Besides, to facilitate the study of the ex-
trinsic calibration or other surround-view based computer vi-
sion tasks, a surround-view dataset comprising 19,078 groups
of surround-views and the associated original fisheye images in
high resolution was also collected where typical types of envi-
ronments were covered. Though WESNet can work well in most

cases, its performance is still not satisfied when working in en-
vironments having low textures or strong texture repeatability.
Thus we will continue to devote efforts in this area.
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