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Abstract—Global localization is a key problem that needs to
be solved for single-line LiDAR based robot navigationsince it
will directly affect the estimation accuracy of the robot’s initial
pose and the success rate of recovering the robot’s state
when it loses its local pose. Existing studies to deal with this
problem usually extract feature points from laser beams and
then resort to fast retrieval and registration methods to further
determine the robot’s pose. Although these methods have
achieved good results in specific scenes, they often fail to
perform well when the robot is far away from the map-building
trajectory. It is therefore highly desirable to develop more
robust techniques for this problem. In this work, we propose
a novel solution which is based on “Dense 2D Signature and
1D Registration”, D2S1R for short. By establishing a dense
signature database for 2D locations and combining with the fast retrieval technology, the 2D search space is extremely
compressed. Furthermore, fast yaw angle determination is achieved by converting scan points to 1D space and measuring
the difference of scan contours based on relative entropy. Experimental results on several complex indoor scenes show
that D2S1R can complete global localization within 0.03s on an ordinary CPU in an area of nearly 4,000m2. Besides, on the
premise of achieving a location accuracy of 0.08 ± 0.04m and an orientation accuracy of 0.72 ± 0.60◦, it can achieve an
average success rate of 95% on all test datasets.

Index Terms— Global localization, mobile robot navigation, single-line LiDAR, scan registration.

I. INTRODUCTION

WHEN a robot is assigned a navigation task, the first
problem to be solved is how to quickly and accurately

determine its position and posture in the global map so as
to further carry out path planning and motion control. When
local localization fails or encounters the problem of robot
kidnapping during navigation, it is necessary to perform global
relocation to restore the state of the robot [1]–[3]. Therefore,
global localization is a key link in the navigation technology
stack of the mobile robot.
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Since global localization estimates the robot’s pose in the
global scope only through sensor information and a priori
map without any position priori, a specific global localization
algorithm is closely related to the sensors it uses. Up to now,
LiDARs (light detection and ranging) and visual cameras are
the two main types of sensors that have been widely studied
and applied. Visual sensors have attracted extensive attention
in the academic and industry in recent years due to their
advantages of low price and abundant information [4]–[6].
However, although many researches have greatly advanced
vision-based localization technologies, they are somewhat lim-
ited by their sensitivities to illumination, motion blur and high
computational complexity. Another kind of sensors commonly
used is LiDAR [7], which has the advantages of high sampling
rate, high angular resolution, accurate distance measurement
capability, adaptability to night environment, etc. Compared
with cameras, it is a kind of more stable and reliable sensors.
LiDARs have been used as the main sensors of localization
algorithms by many autonomous navigation systems. In this
work, a global localization solution will also be built based on
a single-line LiDAR.

A common solution for global localization with single-
line LiDARs is to make use of filters (such as Kalman filter
and particle filter) to track the robot [8]–[11]. This kind
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of approches recursively estimate the posterior distributions
of the poses by fusing motion information and perception
data, which is a “golden standard” for the problem for a
long time. However, in practical applications, without setting
proper initial poses, these methods require the robots to wander
around to update the distributions, leading to long convergence
time. Without moving the robots, another series of studies
directly take the poses with the highest matching degrees as
the results. Such schemes carry out global localization in two
steps, place recognition and local registration [12]–[17]. Place
recognition with 2D range data is mainly derived from loop
closure detection approaches based on feature points in visual
SLAM [18]–[20]. By establishing a feature-point database
of key frames and resorting to efficient retrieval technology,
a rough place is determined, and then the accurate pose of the
robot is obtained by performing registration locally. For the
feature-point databases are built from the map-building tra-
jectories, these place-recognition-based schemes can achieve
satisfied results when there are approximate records of the
current poses in the databases. However, when the robots are
far away from the map-building tracjectories, the detection
rates of same feature points will be greatly reduced, leading
to localization failures.

For the purpose of achieving a fast global localization
without the need for robot movement and overcoming the
drawback that the place-recognition-based strategies are easy
to be affected by varying perspectives, this paper holds the
view that it is necessary to design a more fine-grained place-
recognition module and a more efficient registration com-
ponent. Therefore, we try to search the best matching pose
directly from the solution space, and propose a novel global
localization scheme based on dense 2D signature and fast 1D
registration, which is abbreviated as “D2S1R”. Considering
that the search space of location is much larger than the
orientation, the pose search is carried out in two steps. First,
a rotation invariant signature is assigned for each feasible
location. Based on a fast retrieval strategy, the 2D search space
is compressed to a few candidate locations, and then a novel
1D laser scan registration algorithm is proposed to determine
the optimal parameters of the robot’s pose.

We validated the performance of D2S1R on three public
datasets and made a comprehensive comparison with the
most widely used place-recognition-based counterparts.
In addition, we also verified the practicability of the
scheme in a real-world scene, and combined it with a
well-known filter-based approach, AMCL (adaptive Monte
Carlo localization) [9], to deal with the localization in
ambiguous scenes. Experimental results show that it takes
merely 0.03 seconds for D2S1R to complete one operation
in a scene of nearly 4000 square meters. Moreover, on the
premise of achieving a location accuracy of 0.08 ± 0.04m
and an orientation accuracy of 0.72 ± 0.60◦, it achieved an
average success rate of 95% on all test sets.

II. RELATED WORK

As mentioned in Sect. I, the global localization approaches
in the existing studies can be classified into two categories,

filter-based ones and place-recognition-based ones. A brief
review of the related work will be presented here.

A. Filter-Based Global Localization
Jensfelt et al. proposed MHL (multi-hypothesis localiza-

tion) [8] to track the robot. It uses a Gaussian mixture model
to construct the state distribution of the robot, in which every
hypothesis is tracked by a corresponding extended Kalman
filter. With the agent’s motion and perception, its parameters
are updated. Finally, the weighted distribution is taken as
the belief of the state. Another typical filter-based global
localization strategy is MCL (Monte Carlo localization) [9],
relying on particle filter. At each update step, MCL estimates
the posterior distribution of the robot pose by importance
resampling. Dellaert et al. [10] were the first to use particle
filter for mobile robot localization, and then AMCL [9] and
MMCL (mixture Monte Carlo localization) [11] were intro-
duced to improve its performance. MCL has the characteristics
of multi-modal distribution modeling by means of particle
representation. Compared with MHL, it has a stronger ability
to express the pose’s posterior distribution. Although the filter-
based ones can solve the global localization problem in theory,
they all require the robots to move randomly before they
converge to the optimal poses, which is usually not allowed
in the actual navigation applications.

B. Place-Recognition-Based Global Localization
The place-recognition-based schemes perform global local-

ization by two steps of place recognition and local registration,
and most of them focus on the former part. To perform place
recognition, a line of researches designed hybrid priori map
representations by making use of visual data and 3D data. In
[12] and [13], while building 2D occupied maps, the image
data of key frames were collected, and the rough spatial
locations were determined by image retrieval technology.
Park et al. [14] established a hybrid map representation by
fusing topological graphs and local metric maps. Ma et al. [15]
utilized a Hough transform to represent the priori map, and
resorted to ICP to register 3D Kinect data. When there is
only 2D range data provided, it becomes more challenging
to design the algorithm. Tipaldi et al. proposed FLIRT (fast
laser interest point transform) [21], a feature detector for
2D laser beams. With FLIRT, location identification can be
accomplished by matching key points frame by frame. Later,
in order to realize global localization, Tipaldi et al. designed
GFP (geometrical FLIRT phrases) [16] based on FLIRT. They
made use of information retrieval techniques to establish
word order descriptions between feature points, achieving the
goal of fast retrieval of target locations. Following a similar
pipeline, Himstedt et al. proposed the GLARE (geometrical
landmark relations) model [17], which encodes the relative
relationship between different key points in a laser scan.
Then, Himstedt et al. resorted to an ANN (approximate
nearest neighbor) model to figure out location candidates
and finally determined the global pose by a RANSAC based
scan matching. For the reason that the design principles of
GFP and GLARE are to encode the spatial locations by
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constructing relationships between feature points, when the
query frames and the records in the pre-established databases
have approximate perspectives, they can achieve satisfied
results. However, the relationship of features can be easily
affected by the stability of the feature detection module, which
may make the induced global localization schemes less robust.

Generally speaking, among the global localization schemes
with 2D range data, the filter-based methods need the robots
to take a long time to move randomly before they converge to
the best poses. Although the place-recognition-based ones do
not share the above-mentioned shortcoming of the filter-based
ones, their performance are greatly restricted by the differences
between the incoming scans and the key frames extracted from
the map-building trajectories.

III. METHODOLOGY

A. Framework Overview
As shown in Fig. 1, the proposed global localization scheme

D2S1R actually comprises two phases, an offline phase and
an online phase. In the offline phase, the priori map M is
patitioned into 2D grids according to a certain resolution. For
each traversable grid, its corresponding location signature is
generated. Then all resulting signatures are inserted into an
ANN tree to obtain a location-related signature search tree,
which is denoted by T.

In the online phase, for each incoming laser scan, a signature
of the current location is generated in the same way as the
location’s signature computed in the offline phase. Then the
signature is used for retrieving the neighboring candidate
locations from T. After that, for each candidate location,
a virtual scan is generated clockwise from M, and is registered
with the incoming scan. Finally, the location and orientation
with the highest matching degree are determined as elements
of the global pose.

B. 2D Search Space Compression
During the search of 2D pose parameters in global scope,

the orientation space is fixed to 2π , while the location space
will increase linearly with the scale of the map. Therefore,
the first problem to be solved is to quickly compress the
location search space. Inspired by place-recognition-based
schemes, we believe that this goal can be achieved by design-
ing recognizable signatures for 2D locations and combin-
ing fast retrieval technology. Our pipeline for 2D search
space compression is presented in Algorithm 1, and detailed
descriptions will be given in Sect. III-B.1 and Sect. III-B.2
respectively.

1) Location Signature: The signature of a 2D location should
have the following characteristics:
• It should have a certain degree of location identification

capability.
• It should be rotation invariant, so as to ensure that the

same location can be retrieved under different heading
angles.

In order to meet the aforementioned requirements, the scan’s
distance histogram is utilized as the signature to encode con-
tour information of the 2D location. Although this signature is

Algorithm 1 Algorithm for T’s Construction
Input:

The priori map, M
Output:

The location-related ANN search tree, T

1: Gridding M according to a certain resolution, get all
passible grids G

2: T← {}, set T as a new empty tree
3: Set the signature histogram’s dimension as d̃
4: Set the sensor’s maximum range as r̃
5: r̃ ′ ← r̃ + ε̃
6: r ← r̃ ′ ÷ d̃
7: for all g ∈ G do
8: Scanning at g from M to get a virtual scan Sv

9: Assign r̃ ′ to all points that exceed r̃ in Sv

10: s← [0, . . . , 0], set siganture s as an array with size of
d̃ , each element with value of 0

11: for all p ∈ Sv do
12: Get p’s scan distance d
13: i ← �d ÷ r�
14: s [i ]← s [i ]+ 1
15: end for
16: Normalize s to s
17: Insert s into T

18: end for
19: return T

only a weak feature, our purpose of this step is to compress the
2D search space fast, and more accurate geometric consistency
check can be accomplished in the second phase via scan
registration.

Specifically, in the offline phase, at each passable location
of M, a virtual scan Sv is obtained from M by simulating the
generation of the laser beam, and then its distance histogram
is calculated as the signature of the location. In order to
ensure that similar candidate locations can be retrieved stably,
the following principles should be paid attention to when
generating virtual scans. One is that the parameters of Sv

should be consistent with the LiDAR. The other is that points
that are out of sight range should also be encoded into
signatures, because they also participate in the environmental
characterization of the position. In our work, the way to deal
with points outside the sight range is to give them a value
slightly greater than the maximum sight range of the sensor.
Finally, considering that the angular resolution of LiDAR
may change, the location signatures need to be normalized
uniformly.

Similarly, in the online phase, the computation of the
signature from the incoming laser scan Sl should also follow
the aforementioned principles to ensure that locations in M
having similar appearances to the one where Sl is acquired are
more probably retrieved.

2) Fast Candidate Locations Retrieval: By generating signa-
tures for all traversable locations in M, a spatial signature set
is acquired. In order to quickly retrieve the neighboring candi-
date locations from it, this paper resorts to a high-dimensional
data retrieval technology to organize these signatures.
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Fig. 1. Framework of our proposed global localization scheme D2S1R. The right part is the offline phase, generating location-related signatures
from each free location of the priori map and inserting them into the location-related ANN search tree. The left part is the online phase, querying
candidate locations according to the signature of the incoming scan, and then performing scan registration on each candidate location.

One common solution to search nearest neighbors in high
dimensional data is KNN (k-nearest neighbors algorithm) [22],
[23]. It is a non-parametric method in machine learning
for classification and regression. However, computing exact
nearest neighbors in high dimension is still a formidable task.
A practical alternative is ANN, which computes the nearest
neighbors in an approximation way. It has been shown that
ANN is possible to achieve significantly faster processing
speed with a relatively small error increment compared with
KNN. Besides, ANN allows the user to specify a maximum
approximation error bound, thus allowing he/she to control the
trade-off between precision and running time [24].

To speed up online localization, a balanced ANN search
tree of location signatures is pre-established in the offline
phase. In the online phase, D2S1R only needs to load it from
the hard disk into the memory, which takes negligible time.
And the time complexity of querying from ANN has been
proved to be a log constant of the tree size [24]. Therefore,
the retrieval efficiency and stability of candidate locations can
be guaranteed at this stage.

C. Yaw Angle Determination Based on Relative Entropy
Several possible 2D locations can be extracted by the pro-

cedure presented in Sect. III-B, but it not the end. Because the
location’s signature comes from statistics, there is a possibility
that different locations have similar signatures. Therefore, it is
necessary to further perform a geometric consistency check
via scan registration.

Traditional scan registration approaches calculate the
matching degree by sampling from the parameter space and

converting the scan in the 2D space with the corresponding
parameters. Although this line of schemes can efficiently
determine the pose, we consider that the single-line LiDAR
scan can be directly matched in 1D space to further improve
the localization efficiency.

To speed up scan registration, an unconventional procedure
to carry out it in 1D space is presented here. First, the incom-
ing laser scan Sl is rearranged in the angular dimension and
arranged into a circular linked list ll in clockwise order.
Similarly, for the virtual scan Sv of a candidate location,
the corresponding circular linked list lv is organized in the
same way. Then, by moving the pointer of Sl ’s linked list
forward step by step and calculating the matching degree of
the two 1D vectors which are between the lists’ head pointer
and tail pointer, the best matching angle between Sl and Sv can
be obtained. Finally, the above registration is repeated between
Sl and each Sv of the candidate locations, and the location and
orientation with the highest matching degree are taken as the
final localization result.

Inevitably, the scanned data will contain a certain amount of
noise. The commonly used distance metrics (such as l1-norm,
l2-norm, etc.) are very sensitive to it. Therefore, in order to
improve the robustness of registration, this work draws on
the processing approach in information theory and makes use
of relative entropy (also known as KL divergence) [25] to
measure the similarity between two sequences. For two vectors
to be matched, they are first treated with zero and infinity
values to avoid seeking logarithmic overflow. Each zero value
is set to a minimum value of ε̃. For each infinity value, a r̃ ′
the same as the one set in offline phase is assigned to it. The
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vectors are then normalized and resampled to a dimension
of 360 with a resolution of 1 degree. The relative entropy of
them is calculated as,

E(vl ||vv )=
360◦∑

θ=1◦
[vl(θ) ∗ log2 vl(θ)−vl(θ) ∗ log2 vv (θ)], (1)

where vl(θ) and vv (θ) represent the values from vl and vv

indexed by θ , respectively.
To sum up, the yaw angle determination procedure is

formally defined in Algorithm 2. Although D2S1R is given by
taking omnidirectional feild of view as an example, it should
be noted that Algorithm 2 can still work under local per-
spectives such as 180 and 270 degrees. The corresponding
change that need to be made is to reduce the local registration
window accordingly. However, because location signatures
will be influenced, therefore, it is necessary for the robot to
rotate in situ to obtain a full circle of scanning.

Algorithm 2 Algorithm of Yaw Angle Determination
Input:

The incoming laser scan, Sl

The virtual scan, Sv

Output:
The yaw angle of Sl , θ

1: Preprocess Sl and Sv to get ll and lv
2: Get vector vl from ll ’s head pointer to tail pointer
3: θ ← 0◦
4: θ̂ ← 0◦
5: ê← inf
6: while θ̂ 	= 360◦ do
7: Step forward lv ’s head pointer and tail pointer
8: Get vector vv from lv ’s head pointer to tail pointer
9: Preprocess vl and vv

10: Get relative entropy e between vl and vv by Eqa. 1
11: if e ≤ ê then
12: ê← e
13: θ ← θ̂
14: end if
15: θ̂ ← θ̂ + 1◦
16: end while
17: return θ

IV. EXPERIMENTS

A. Setup
As the result of global localization is relative to M,

the global poses of samples in the map were taken as the
ground truth. For a specific dataset, the mapping pipeline
introduced in paper [26] was adopted to build the corre-
sponding priori map with a resolution of 0.05m. We obtained
simulated LiDAR scanning data and poses with the help of
Stage simulator [27]. Our D2S1R is implemented by C++
language, and we resorted to the ANN library implemented
by Muja and Lowe [24] to achieve fast candidates retrieval.
All experiments were carried out on an Intel core i7-8750h
CPU, and all routines were single threaded.

TABLE I
DATASETS INFORMATION

1) Datasets: For examining the actual performance of
D2S1R, three public datasets in real scenes were involved for
validation, namely the dataset provided by Google corporation
in [26], the dataset of campus buildings provided by MIT
University in [28], and the dataset provided by Intel Research
Lab in [29]. For ease of description, they were referred to as
DG0, DM0 and DI0 , respectively.

In order to unify the data format, the Stage simulator [27]
was utilized to resample the scan from the original data.
Specifically, we took the corresponding priori map as the
Stage’s scene, in which a robot model equipped with a single-
line LiDAR was placed. Then, the robot was controlled to
move in the scene by receiving motion commands from a
keyboard. While the robot was moving, the pose and scanning
data acquired by the virtual LiDAR from the Stage simulator
were recorded.

As discussed above, only verifying the samples on the
map-building trajectory cannot thoroughly reflect the perfor-
mance of the global localization algorithm. Therefore, for each
dataset, Stage simulator was utilized to take another set of
trajectory and corresponding scan data from each dataset’s
priori map as a new test set in the same way as the resampling
step, which were respectively recorded as DG1, DM1 and DI1 .

In addition to the public datasets, we collected a dataset
comprising data from an indoor scene of Tongji University
for real-world experiments, which was named as DT. Details
of the all datasets are listed in Table I.

2) Evaluated Approaches and Metrics: In order to compare
the performance of D2S1R with that of the place-recognition-
based approaches, two typical global localization schemes
based on FLIRT [21] were compared with. One is Sivic and
Zisserman’s strategy [30], and the other is Tipaldi et al.’s
approach [16]. As mentioned earlier, the filter-based methods
need the robot to move randomly to converge, so we can’t
compare D2S1R directly with them. Instead, we will have a
qualitative comparative analysis with the most commonly used
AMCL [9].

To evaluate the speed of D2S1R, the average 2D candidate
locations retrieval time t1, the average yaw angle determination
time t2, and its overall average localization time t3 were
timed. To compare the computational efficiency with place-
recognition-based schemes, the average time consumption
of Sivic and Zisserman’s strategy [30] and Tipaldi et al.’s
approach [16] were also timed, and recorded them as t4 and
t5 respectively.
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TABLE II
SETTINGS FOR HYPERPARAMETERS OF D2S1R

TABLE III
TIME CONSUMPTIONS

The success rate is also one of the indicators that global
localization is concerned with. In this paper, samples with
a location deviation of less than 0.2 meters and an angle
deviation of less than 5 degrees were regarded as successfully
located ones. The ratio of the number of the successful ones
to the number of all test samples was taken as the localization
success rate.

Localization precision is another indicator that needs atten-
tion. Understanding the localization capability and error range
at different stages is helpful for parameters setting and improv-
ing the localization success rate. Therefore, this paper made
a statistical analysis on indexes of average location error (δl),
standard deviation of location error (σl ), average orientation
error (δo) and standard deviation of orientation error (σo).

It should be noted that the comparisons of all metrics
were carried out under the optimal parameter combination of
the corresponding algorithm. The hyperparameters settings of
D2S1R are listed in Table II, where r̃ represents the range
of the sensor, ε̃ is the minimum value adopted, k̃ represents
the number of candidate locations retained after compression
of the 2D search space, d̃ is the dimension of the location
signature, accordingly, μ̃0 represents its division bin size,
μ̃1 represents the priori map resolution, and μ̃2 represents
the angular resolution of the registration step. The parameter
settings of the other two place-recognition-based schemes
followed the configuration provided in the original papers [16],
[30] and related open source codes [31], [32]. For AMCL,
its parameter settings were kept the same with the default
parameters recommended by the ROS navigation stack [33].

B. Results
1) Run Time: Comparing the t3, t4, and t5 columns in

Table III, what can be observed is that the overall localization
time of D2S1R is on the same order as that of the place-
recognition-based methods, and D2S1R is faster than Tipaldi
et al.’s approach [16] on the three datasets of different sizes
experimented. It can be observed that although D2S1R is based
on dense location signatures, it is not inferior to the methods
based on sparse feature points with respect to time efficiency.
The reason is that the fast retrieval technique based on ANN
greatly reduces the 2D search space. In addition, the scan

TABLE IV
SUCCESS RATES OF COMPETING METHODS ON DIFFERENT

TRAJECTORIES

registration in 1D space further accelerates the localization.
Although D2S1R is slightly slower than Sivic and Zisserman’s
strategy [30], it will be seen later that D2S1R has higher
success rate and stability of localization.

Comparing t1, t2, and t3 from different datasets again, it can
be seen that although DI0 , DM0 and DG0 are nearly 5 times
different in spatial range, there is no obvious difference in
time consumption of the three in different stages. It can be
speculated that within a certain range, the localization speed
can be controlled at a constant time by D2S1R. In addition,
the comparison shows that although scan registration and
candidate location retrieval are on the same time level, scan
registration with multiple candidate locations becomes the
bottleneck of D2S1R’s efficiency. And it is not difficult to
know that scan registration can be performed in parallel,
so relying on multi-core technology, the time consumption of
D2S1R can be further reduced.

For comparing localization efficiency with filter-based
AMCL, we randomly selected 20 different locations from DT
for experiments. At each location, AMCL was assigned an
initial pose with deviation (0.3m, 0.3m, 30◦) from the ground
truth. When the deviation between the localization result of
AMCL and the ground truth was less than 0.2m, and the
angle deviation was less than 10◦, AMCL was regarded as con-
verged. Results showed that the convergence time of AMCL
ranged from 1.99s to 10.99s, and the average convergence time
was 4.39s, which were much longer than place-recognition-
based approaches and our D2S1R.

2) Success Rate: From the results in Table IV, it can be
observed that the success rate of D2S1R is over 91% on
both the map-building and non-map-building trajectories.
By contrast, Sivic and Zisserman’s strategy [30] and
Tipaldi et al.’s approach [16] can achieve pleasing success
rates only on the map-building trajectories, but their
localization performance is greatly reduced when deviating
from the map-building trajectory.

One noticeable phenomenon in Table IV is that the place-
recognition-based schemes have achieved good results on both
types of trajectories of the Intel dataset (DI0 and DI1). Table I
shows that the ratio of the number of samples to map area of
DI0 is much larger than that of the other two datasets. It can be
inferred that the spatial range of the Intel dataset is relatively
small, and the map-building trajectory has enough scan data
at any local location, thus improving the localization result.
Therefore, one possible way to improve the global localization
capability of place-recognition-based methods is to spread the
mapping trajectory throughout the mapping space as much as
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Fig. 2. Localization error distribution of D2S1R. The left axis indicates
location error. The right axis indicates orientation error. The black dots
indicate outlier samples.

TABLE V
LOCALIZATION PRECISION OF D2S1R

possible. However, this needs to be done at the cost of reducing
the time efficiency, which is illustrated in Table III that t5 of
DI0 is much longer than the other two datasets.

3) Precision: The final localization deviation and fluctuation
of D2S1R on different datasets are presented in Table V. The
statistics manifest that D2S1R achieves very high localization
precision on all datasets, with the average precision of the
location being about 0.08± 0.04m and the average precision
of the orientation being about 0.72± 0.60◦.

The box plot of the error distribution is shown in Fig. 2,
from which it can be seen that the localization fluctuation
of D2S1R on Intel dataset is larger than that of the other
two datasets. The possible reason of this is that the space of
this dataset is relatively dense, and the generation of location
signature requires higher distance resolution. Otherwise, it is
easy to cause that the optimal location does not have sufficient
discrimination against the locations nearby, and eventually
more outliers appear.

Although the global localization precision of D2S1R is
accurate enough for most indoor navigation applications, it is
worth noting that the partition resolution of M in offline
phase and the scan registration resolution in online phase have
a direct impact on the final localization precision. For this
reason, corresponding adjustments should be made according
to maps and sensors in practical applications. Besides, on the
basis of D2S1R, a more fine-grained local registration can
further improve the localization precision.

Fig. 3. Matched examples. In (a), (b), and (c), the white curves are the
test trajectories, the dark red points represent the failed samples, and
the rest are the successful samples. The blue point clouds in the partially
enlarged figures represent the projected scan after the transformation of
the localization results.

4) Matched Examples and Failure Cases: The matched
examples of different spatial positions in three actual scenarios
are shown in Fig. 3(a), Fig. 3(b) and Fig. 3(c), respectively.

It can be discerned from the distribution of successfully
located samples in Fig. 3 that D2S1R has high success rate
and high accuracy in narrow area, wide space, structured
space, irregular area and noise environment, which shows its
robustness and practicability in real scenes.
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Fig. 4. Typical failure cases. Location features along long corridors
((a) and (b)) have low discrimination. Narrow areas (c) require higher
resolution for distance histogram partition. High repetition pattern in office
areas (d) causes candidate location deviation. Priori map errors (e) bring
matching offset. The red points represent the scan converted by the
localization result.

Although D2S1R has achieved remarkable results as a
whole, there are still some local failure samples. Several
typical failure cases are shown in Fig. 4. By analyzing the
samples failed to be located, several typical situations are
summarized here:
• Narrow long corridor (Fig. 4(a) and Fig. 4(b)). In such a

scene, all locations along the corridor have high matching
degrees, which is a typical repetitive pattern problem in
localization. Due to the limitation of the measurement
range, this problem cannot be completely solved by a
single short-range LiDAR, and it is necessary to incorpo-
rate other sensors or resort to long-range LiDARs.

• Candidate location deviation (Fig. 4(c)). One of the possi-
ble reasons for this situation is that the partition resolution
of the distance histogram is too large, resulting in low
degree of discrimination of the location against adjacent
locations.

• Office area repetition pattern (Fig. 4(d)). It is another
typical repetition pattern scenario, i.e. a similar office area
appears, resulting in the best candidate location not being
within the retrieval range. This can be solved to some
extent by increasing the number of candidate locations.

• Priori map error (Fig. 4(e)). The localization result of
this situation appears as the local deviation of matching
degree, which is caused by the lack of local scanning
data. To avoid such errors, when constructing a priori
map, someone should expand the whole space as much
as possible and add enough loops to improve the accuracy
of map construction.

5) Real-World Experiment: Using the robot platform
TURTLEBOT2 as shown in Fig. 5, we collected a real-world
dataset with a LEISHEN N30103A single-line LiDAR, and
established the priori map of the scene as shown in Fig. 6.
According to the experimental results, D2S1R achieved a
success rate of 89% in this scenario, which fully demonstrated

Fig. 5. Real-world experimental platform. Our experimental platform is
composed of a TURTLEBOT2 robot platform and a LEISHEN N30103A
single-line LiDAR with 360◦ viewing angle and 30m measuring range.

Fig. 6. Real-world experimental result. The white curve is the trajectory
of the robot when collecting scanning data, and the crimson points on it
indicate the locations where D2S1R failed to locate.

Fig. 7. Green arrow represents the current pose. Blue points represent
the transformed scan. Red points represent AMCL’s particles. Local-
ization fails without any priori information (a). When the initial pose is
specified, AMCL can estimate an appropriate pose, but its particles are
not convergent well (b).

its practicality. The samples failed to be located mainly
concentrate near the starting point and in the long corridor.
The failures in the long corridor are due to the influence
of repetition patterns as discussed in Sect. IV-B.4, while the
failures near the starting point can be attributed to the existence
of a large area of glass wall.

6) Localization in Ambiguous Scenes: One of the purposes
of designing D2S1R is to achieve global localization without
the need for robot movement. However, it is difficult to deal
with the localization problem in ambiguous scenes only by
the one-shot scanning of a fixed position. Therefore, we will
discuss the treatment scheme in this special case.

Filter-based AMCL has the characteristics of multi-modal
modeling, and is a common method for global localization
in ambiguous scenes. However, it is difficult for AMCL
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Fig. 8. Localization results in an ambiguous scene by the fused model
of D2S1R and AMCL. The green dots on the white trajectory represent
the localization results of the fused model. When the results of D2S1R
are continuously fed into AMCL as a pseudo odometer, the particles of
AMCL can converge well, and the localization success rate is greatly
improved in the long corridor.

to converge without a suitable initialization (as shown in
Fig. 7(a)). When the localization result of D2S1R is given
to AMCL as the initial pose, it can be seen that AMCL
can estimate an appropriate pose with probability, although
its particles are not completely convergent at this time (as
shown in Fig. 7(b)). To further make the particles converge,
it is necessary for the robot to move to update its motion
and observation. However, when only a single-line LiDAR is
equipped, only the observation update is available. Therefore,
we consider transforming D2S1R’s outputs as a continuous
pseudo odometer to feed into AMCL. From the experimental
results in an ambiguous scene (as shown in Fig. 8), it can be
observed that although AMCL or D2S1R can’t individually
solve the global localization problem well in this environment,
the fused model of the two gives satisfactory localization
results. In the experiment of the long corridor, all samples
were successfully located, which benefits from the seamless
combination of the advantages of D2S1R and AMCL.

V. CONCLUSION

In this work, aiming at solving the problem of fast global
localization relying on a single-line LiDAR in large indoor
scenes, a novel localization solution based on dense location
signatures and fast scan registration was proposed. In order
to overcome the problem that the previous place-recognition-
based methods using sparse feature points are greatly affected
by varying perspective, a location-related signature data-
base is densely established, and the fast 2D search space
compression is achieved by an efficient retrieval technique.
Then, the incoming 2D laser scan is transformed back to
1D space. At the same time of rapid geometric verification,
the orientation of the scan is determined. The experimental
results on different trajectories of actual scenes corroborate
that D2S1R has achieved an average success rate of 95%,
and has achieved a location precision of 0.08 ± 0.04m and
an orientation precision of 0.72 ± 0.60◦. Besides, in a space
of nearly 4,000 square meters, it only takes 0.03 seconds to
determine the global pose on a common CPU. For most indoor
navigation applications, the method in this paper can meet the
actual needs in accuracy, speed and success rate. Furthermore,
D2S1R can be seamlessly fused with AMCL to improve its
performance in ambiguous scenes.

Although D2S1R solves the global localization problem
with a single-line LiDAR to some extent, the sparsity of
the single-line sensor data still brings many limitations and
difficulties to the algorithm design. To further improve its
performance may require more advanced or more kinds of
sensors.
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