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ABSTRACT

Recent years have witnessed a growing interest in online RGB-D
3D reconstruction. On the premise of ensuring the reconstruction
accuracy with noisy depth scans, making the system scalable to
various environments is still challenging. In this paper, we devote
our efforts to try to fill in this research gap by proposing a scalable
and robust RGB-D 3D reconstruction framework, namely Chunk-
Fusion. In ChunkFusion, sparse voxel management is exploited to
improve the scalability of online reconstruction. Besides, a chunk-
wise TSDF (truncated signed distance function) fusion network is
designed to perform a robust integration of the noisy depth mea-
surements on the sparsely allocated voxel chunks. The proposed
chunk-wise TSDF integration scheme can accurately restore sur-
faces with superior visual consistency from noisy depth maps and
can guarantee the scalability of online reconstruction simultane-
ously, making our reconstruction framework widely applicable to
scenes with various scales and depth scans with strong noises and
outliers. The outstanding scalability and efficacy of our ChunkFu-
sion have been corroborated by extensive experiments. To make
our results reproducible, the source code is made online available at
https://cslinzhang.github.io/ChunkFusion/.

Index Terms— 3D Reconstruction, RGB-D Sensors, TSDF,
Deep Learning

1. INTRODUCTION

Accurate online 3D reconstruction is a fundamental technology in
robotic navigation and augmented reality. Recently, a large number
of studies [1, 2] have been explored to attempt to leverage RGB-D
camera to achieve online 3D reconstruction owing to its portability,
popularity, and ability to capture visual and geometric information
concurrently.

The key of online RGB-D 3D reconstruction is to encode the
depth measurements into a 3D model incrementally. One kind of
compact and effective model representation to support the recon-
struction is the voxel grid. The seminal work presented by Curless
and Levoy [3] first leverages the signed distance function (SDF) to
represent depth maps. SDF uses the distance to the nearest surface to
encode the geometry information into the discretized grid of voxels.
In an advanced version of SDF, truncated signed distance function
(TSDF) [4] further reduces the computational overhead by truncat-
ing the SDF values with a certain threshold and only storing a trun-
cated region around the actual surface. TSDF has been widely used
in many RGB-D 3D reconstruction schemes [4, 5] due to its simplic-
ity and efficiency, yet it still has limitations mainly in two aspects:
1) TSDF relies on the memory-inefficient voxel grid with a fixed
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Fig. 1. The overall pipeline of ChunkFusion. Based on the point
cloud projected from the scanned depth map, the corresponding
chunks will be updated by fusing the newly measured TSDF via a
two-stage 3D convolutional network.

size, which restricts the scale of reconstruction; 2) The linear fusion
adopted in TSDF fails to handle the depth-related noises and outliers,
which may result in poor reconstruction quality.

To improve the scalability of TSDF, some scalable volumet-
ric representations like MovingVolume [6, 7] and VoxelHashing [8]
have been proposed. The former maintains a volume that moves with
the camera and streams out data outside the volume. The latter al-
locates voxels sparsely where measurements are observed, enabling
scalable management of the voxel volume. Besides, hierarchical data
structures, like octree [9], optimize the memory management by sub-
dividing the space, allowing for large-scale reconstruction.

In terms of enhancing the surface quality of the TSDF-based
3D reconstruction, some deep learning based schemes emerged have
shown the potential to fulfill this goal. Among them, a few focus
on the model representation. For instance, the designed networks in
[10, 11, 12] can elegantly parameterize the representation of various
3D models. Another branch concentrates on learning-based TSDF
integration. For example, RoutedFusion [13] resorts to the convo-
lutional network to predict the TSDF update for volumetric integra-
tion. DI-Fusion [14] and NeuralFusion [15] perform geometric in-
tegration on the domain of the latent vector and achieve compelling
results on noise suppression and outlier removal. Meanwhile, Oct-
NetFusion [16, 17] manages to handle hierarchical model represen-
tation based on the octree using a 3D neural network. However, these
schemes are all based on predefined volumes with fixed sizes. While
in most cases, the specific required sizes of volumes are unknown
before the accomplishment of the reconstruction, which limits their
performance in large-scale scenes.

The aforementioned reconstruction solutions can only focus on
either the scalability or the surface quality, while a framework that
can balance both of the two aspects is still lacking. As an attempt to
fill in the research gap to some extent, we propose ChunkFusion, a
scalable learning-based RGB-D 3D reconstruction framework. Our
contributions can be summarized as follows:
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• ChunkFusion manages to employ the scalable voxel hashing
scheme to the learning-based TSDF integration. Such a novel
strategy eliminates the restriction of previous learning-based
schemes and makes it possible to adapt the learning-based
TSDF fusion to scenes with various scales.

• A two-stage fusion network is designed to perform the TSDF
integration in an end-to-end manner. It is demonstrated that
our fusion network can accurately restore the actual surfaces
from noisy depth maps, yielding satisfactory reconstruction
results both qualitatively and quantitatively.

• The proposed method fully exploits the sparsity of voxel rep-
resentation by utilizing the chunk-wise fusion strategy and
the sparsity-aware 3D convolutional network. Such an im-
plementation scheme can further improve the computational
efficiency and the surface quality of reconstruction.

2. METHOD

In this part, we will present the proposed ChunkFusion in detail,
the schematic architecture of which is shown in Fig. 1. As illus-
trated, for a frame scanned by an RGB-D camera with a known pose,
ChunkFusion first allocates chunks according to the distribution of
the projected point cloud. Then the newly allocated chunks storing
the depth information will be fused individually with the historical
chunks by a two-stage fusion network. Subsequently, the standard
iso-surface mesh extraction will be conducted on the fused chunks.
As a result, the global consistent 3D model of the scanned object can
be yielded.

2.1. Chunk Management

To support a scalable reconstruction, we divide the reconstructed
scene evenly into small chunks. For a chunk Ci with an edge length
of k, it is represented as Ci = (xi,v

t−1
i ,Mi), where xi ∈ Z3

is the coordinate of the chunk, vt−1
i ∈ Rk×k×k is the cumulative

TSDF value at timestamp t − 1, and Mi is the triangle mesh ex-
tracted from vt−1

i .
When a new frame comes in, all the existing chunks which are

occupied by the projected point cloud will be integrated individually,
and the corresponding new chunks will be allocated and assigned to
store those unfused points. To reduce the memory overhead and
ensure a superior scalability, all the allocated chunks are organized
sparsely in a hash map, with the coordinate xi of each chunk as the
key. Moreover, to enable a real-time visualization, the mesh Mi

of each updated chunk will be re-computed with the marching-cube
iso-surface extraction from the current fused TSDF value vt

i .
With the chunk-wise integration scheme, the learning-based

TSDF fusion can be conducted on partial regions instead of on the
model level or the scene level, which means that our fusion network
only needs to learn to integrate the geometry information on surface
units. Besides, these surface units are commonly shared across dif-
ferent models, explaining why the chunk-wise integration can better
generalize to various data. Such a local implicit learning strategy
has demonstrated its superiority in related 3D learning-based tasks
[18, 19, 14].

However, since each chunk is integrated separately in a nonlin-
ear manner, the discontinuity may exist on the chunk boundaries,
which will lead to defects on the reconstructed surface. To solve this
problem, as shown in Fig. 2 (a), we pad each chunk with voxels
from its neighbor chunks before updating it. Thus, the fusion mod-
ule is expected to generate a smooth transition across the boundaries

Chunk 

Region 

Fused 

Region Noisy Surface Fused Surface

(a) (b)

Fig. 2. Chunk-wise surface reconstruction. (a) A 2D example of
chunk padding. (b) An example of chunk surface reconstruction.

with adjacent geometric information and ensure a better continuity
among chunks.

2.2. Fusion Network

The proposed chunk-wise TSDF fusion network is composed of two
modules, a fuser and a parser. The fuser integrates TSDF value v̂t

i

computed from the current depth map to the historical state vt−1
i in

an end-to-end manner, rather than utilizing a hand-crafted weight.
The parser subsequently refines the fused TSDF vt

i by suppressing
noises and outliers. An example of the fused chunk is illustrated in
Fig. 2 (b).

The fuser and the parser are both implemented with 3D convo-
lutional neural networks. Since most of the voxels within a chunk
are unoccupied and do not carry valid geometric information, the
standard 3D convolution layer that traverses all input voxels is re-
dundant and will affect such sparsity. Therefore, we resort to sparse
submanifold convolutional networks (SSCNs) [20] [21], which can
perform convolution sparsely on occupied voxels solely. With SS-
CNs, substantial computational time can be saved and the sparsity
of the TSDF voxels can be maintained. Thanks to the sparsity-aware
convolution and the chunk-wise fusion scheme, an 8-layer convolu-
tional network is qualified for our implicit TSDF integration. Our
fusion network can efficiently extract the geometric features from
input depth measurements with fewer network parameters. Such a
lightweight fusion network can reduce the computational cost for
integration and ensure the online capability of the reconstruction
pipeline.

To train the network in a supervised manner, the loss function is
defined as,

L = L1 + L2 + Lgrad + Lsign, (1)

where L1, L2, Lgrad and Lsign are the L1 loss, the L2 loss, the
gradient loss and the sign loss, respectively. Among them, L1 loss
and L2 loss are the corresponding l1 and l2 distances between the
predicted TSDF values and the ground-truth values.

To ensure the smoothness of the reconstructed surface, the gra-
dient loss Lgrad is introduced to restrict the 3D gradient of TSDF
values, which is defined as,

Lgrad =
∑

j=x,y,z

1

k3

∥∥∇j(F(v̂t
i,v

t−1
i ))−∇j(v

∗
i )
∥∥
1
, (2)

where F(·, ·) represents the TSDF fusion network, ∇x(·), ∇y(·),
∇z(·) return the 3D Sobel gradients along the axis x, y and z, and
v∗
i is the corresponding ground-truth TSDF value.

The signs of the TSDF values encode whether voxels are inte-
rior or exterior to the surface, which can significantly influence the
accuracy and quality of the reconstructed surface. For such a reason,

3819

Authorized licensed use limited to: TONGJI UNIVERSITY. Downloaded on July 05,2022 at 12:46:57 UTC from IEEE Xplore.  Restrictions apply. 



0.01

0.06

TSDF RoutedFusion DI-Fusion Ours (ChunkFusion) Ground-truth

Fig. 3. Reconstruction results on “lr kt0” sequence of the ICL-NUIM dataset. The top row is the heatmaps of surface errors. The bottom row
is the closed-up view of the reconstruction results. As presented, ChunkFusion can reconstruct more preferable surfaces with high accuracy
and visual consistency.

we exploit the binary cross entropy to guarantee the correctness of
the sign of each voxel. Specifically, the sign loss Lsign is formed as,

Lsign = BCE(
F(v̂t

i,v
t−1
i ) + 1

2
, sign(v∗

i )), (3)

where BCE(·, ·) is the binary cross entropy and sign(·) returns the
signs of the given values. The signs of the ground-truth TSDF values
are treated as the classification targets in BCE.

2.3. Network Training

The fuser and the parser are trained on the synthetic dataset, Mod-
elNet [22], from which we sample 60K depth frames and the associ-
ated ground-truth TSDF voxels from 300 different mesh models. To
narrow the gap between these synthesized depth maps and the real
measurements from RGB-D sensors, we add depth-related noises to
the depth maps as suggested in [23].

Since the TSDF integration is conducted incrementally, the
frame-based TSDF fusion networks [13, 15] are also trained incre-
mentally with batch-size one. Instead, we train the networks with
the shuffled chunk data extracted from different frames, supporting
a larger batch-size configuration. Moreover, we train the parser first
and consider the output of the pre-trained parser as historical states
to further train the fuser. By doing so, a faster convergence and a
better generalization ability can be guaranteed.

3. EXPERIMENT

We conducted thorough experiments to validate the performance of
ChunkFusion both qualitatively and quantitatively. The experiments
were conducted on two synthetic datasets, ModelNet [22] and ICL-
NUIM [23], as well as self-collected real-world data. ChunkFusion
was compared with three state-of-the-art competitors, including the
standard TSDF [4], RoutedFusion [13], and DI-Fusion [14]. Be-
sides, ablation studies were also performed to evaluate the efficacy
of each module in ChunkFusion.

3.1. Setup

ChunkFusion was implemented with PyTorch and trained on a work-
station with an Intel Xeon E5-2630 v3 @ 2.40GHz CPU and an
NVIDIA GeForce Titan X GPU. The real-world data was collected
using an Orbbec Astra pro RGB-D camera, and the trajectory was
restored by ORB-SLAM2 [24]. The voxel resolution and truncation
distance of TSDF were set to 0.01m and 0.04m, respectively.

Table 1. Quantitative results on the ModelNet dataset.
Methods MSE ↓ MAD ↓ IoU [%]↑
Standard TSDF [4] 0.0706 0.1992 0.7750
RoutedFusion [13] 0.0664 0.1879 0.7561
Ours (ChunkFusion) 0.0409 0.1491 0.7779

Table 2. Quantitative results on the ICL-NUIM dataset.
Methods lr kt0 lr kt1 lr kt2 lr kt3
Standard TSDF [4] 0.0567 0.0667 0.0486 0.0441
RoutedFusion [13] 0.0491 0.0414 0.0327 0.0391
DI-Fusion [14] 0.0104 0.0120 0.0172 0.0113
Ours (ChunkFusion) 0.0063 0.0060 0.0086 0.0044

3.2. Evaluation Metrics

Three criteria at voxel level were considered for quantitative eval-
uation on the results of the ModelNet dataset. Mean square error
(MSE) and mean absolute distance (MAD) were measured between
the reconstructed TSDF values and the ground-truth TSDF values
over all valid voxels within the truncated region. MSE and MAD
could evaluate the reconstruction performance with the deviation on
the TSDF field. Intersection over union (IoU) was also computed
over the occupied voxels of reconstructed volume and ground-truth
volume, which could measure the correctness of voxel occupancy.

For the results on the ICL-NUIM dataset, the cloud/mesh dis-
tance [23] was used to measure the performance at surface level.
The reconstructed models were first finely aligned to the ground-
truth mesh model. Then, the perpendicular distance to the closest
triangle mesh in the ground-truth model was recorded for each ver-
tex in the reconstruction results. The average distance of all vertices
could quantify the accuracy of reconstructed surfaces.

3.3. Performance on Synthetic Dataset

The results on the ModelNet dataset are summarized in Table 1. In
this experiment, we reconstructed the voxel volumes of 50 models
from the corresponding synthesized depth map sequences. We can
see from the results that ChunkFusion outperforms both the stan-
dard TSDF and RoutedFusion on all three metrics. It implies that
our end-to-end TSDF integration network can effectively extract the
geometry features from noisy depth maps and thus can obtain the
precise TSDF values.

Experiments were also conducted on the ICL-NUIM dataset.
We fused every 30th frame to reconstruct the scene and measured
the reconstruction quality via surface error. According to the results
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(a) Reconstructed Scene

TSDF Ours (ChunkFusion)

(b) Surface Detail

Fig. 4. Reconstruction results of a large indoor scene. (a) The com-
plete view of the reconstructed scene. (b) The reconstructed details
of standard TSDF and ChunkFusion. As illustrated, ChunkFusion
can support the reconstruction of a large scene as well as improve
the surface quality.

shown in Table 2 and Fig. 3, it can be found that ChunkFusion can
achieve better surface accuracy than its counterparts. As shown in
the top row of Fig. 3, the standard TSDF and RoutedFusion can not
achieve satisfactory surface accuracy due to the outliers on the left
side of the scene, which are in red. Such defects are shown more
clearly on the bottom row of Fig. 3, in which a large number of frag-
ments corrupt the reconstructed results. By contrast, DI-Fusion and
ChunkFusion manage to suppress the influence of these outliers and
restore the actual surface, thus resulting in lower surface errors. For
the aspect of visual consistency, DI-Fusion tends to smooth out the
details and fails to guarantee accuracy on surface boundaries. How-
ever, our method is able to balance the smoothness and accuracy of
the reconstructed surfaces.

3.4. Performance on Real-world Data

The qualitative results on real-world data are illustrated in Fig. 4. As
shown, thanks to the chunk-wise integration scheme, our ChunkFu-
sion has successfully reconstructed an indoor scene of approximately
250m2 while its counterparts fail to support the reconstruction of
such a large-scale scene.

We further demonstrate the generalization ability of ChunkFu-
sion with surface details shown in Fig. 4 (b). As shown, the model
reconstructed using standard TSDF is with a rough surface and obvi-
ous outliers, while a smooth and clean surface can be reconstructed
accurately by ChunkFusion. The compelling results of ChunkFusion
demonstrate that it can generalize well to real depth maps captured
by RGB-D sensors, though trained on a synthetic dataset.

3.5. Ablation Analysis

Detailed ablation studies were conducted on the ModelNet dataset
to validate the contribution of each network module and loss term in
the proposed ChunkFusion. The four baselines for the ablation study
are elaborated as follows,

• Ours w/o parser: The parser is removed from the fusion net-
work and the network is trained with the fuser solely;

• Ours w/o Lgrad & Lsign: The network is trained without
Lgrad and Lsign, using only L1 and L2;

• Ours w/o Lgrad: The network is trained without Lgrad;

• Ours w/o Lsign: The network is trained without Lsign.

Table 3. Ablation study.
Methods MSE ↓ MAD ↓ IoU [%]↑
Ours w/o parser 0.1152 0.2754 0.7779
Ours w/o Lgrad & Lsign 0.1186 0.2693 0.7779
Ours w/o Lgrad 0.0948 0.2446 0.7779
Ours w/o Lsign 0.0500 0.1584 0.7779
Ours Full 0.0409 0.1491 0.7779

Table 4. Efficiency analysis

Methods RoutedFusion
[13]

DI-Fusion
[14]

Ours (Chunk-
Fusion)

Time (ms) 4744 334 540

The results of above baselines are summarized in Table 3.
It’s worth mentioning that the IoU results remain unchanged

across all ablation baselines. The underlying reason is that the fully-
SSCNs implementation of ChunkFusion does not change the distri-
bution of occupied voxels throughout the whole fusion stage.

As shown in Table 3, MSE and MAD increase with the absence
of the parser, showing that it can help improving the accuracy of
reconstructed TSDF values. We also demonstrate how different loss
terms affect the reconstruction results. It can be seen that the network
fails to generate satisfactory results with L1 and L2 solely, whereas
MSE and MAD are reduced by nearly 50% when sign loss is intro-
duced, demonstrating the considerable contribution of the sign loss
for ensuring surface accuracy. The error is further reduced when we
combine both the sign loss and the grad loss. Such a progressive
improvement implies the efficacy of the proposed loss terms.

3.6. Efficiency Analysis

We also provide the comparison on time consumption of fusing a
single keyframe with two baselines [13, 14] and results can be found
in Table 4. ChunkFusion achieves satisfied time efficiency com-
pared with other learning-based methods. Although ChunkFusion
performs slightly slower than DI-Fusion [14], it can generate more
accurate reconstruction results.

4. CONCLUSION

In this paper, we proposed a scalable learning-based RGB-D 3D re-
construction framework, ChunkFusion. The key idea of ChunkFu-
sion is to combine the sparse voxel management with a chunk-wise
fusion network to achieve improved memory efficiency and recon-
struction quality. The proposed reconstruction framework is widely
applicable to scenes with various scales and depth scans with strong
noises and outliers. Experiments on various datasets showed the su-
periority of our method on both reconstruction scalability and geo-
metric consistency over the state-of-the-art competitors.
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