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ABSTRACT

The realistic simulation of underwater scenes has important signif-
icance for many researches related to underwater vision, such as
underwater image restoration, underwater moving object monitor-
ing, etc. To date, however, the existing underwater scene simula-
tion pipelines are either too complicated due to the continuous spec-
tra and camera parameters involved, or difficult to control since the
empirically controlled distance based fog effect is usually used by
them. In this paper, we try to fill in this research gap by proposing
an Underwater Scene Simulation approach, namely USSim, which
especially focuses on the influence of ocean water. In USSim, Jerlov
water type and depth are regarded as main variables to control the
simulation effects. In addition, the spectra of the incident light is
decomposed into three primary components and their attenuations
are modeled separately, and finally the simulated scene is generated
via the hybrid underwater imaging model proposed by us. USSim
greatly reduces the computational complexity and enables the fog
effect to be controlled by variables with explicit physical meanings.
The controllability, physical interpretability and simulation effects of
our USSim under different conditions have been verified by exten-
sive experiments. To make our results reproducible, the source code
is made online available at https://cslinzhang.github.io/USSim/.

Index Terms— Underwater Scene Simulation, Jerlov Water
Types, Underwater Imaging Model

1. INTRODUCTION

Recent years have witnessed a growing interest in the exploration
and researches on marine mineral resources [1] and biological pop-
ulations [2] based on vision technologies. However, it is highly ex-
pensive and even impractical to get real underwater images in some
cases. A feasible solution to conquer this problem is to use virtual
simulation technologies to create realistic underwater scenes, which
is also the focus of this paper.

From the theoretical perspective, the primary issue of simulat-
ing underwater images is how to model the imaging mechanism of
the underwater object. The underwater optical imaging models re-
lated to the imaging mechanism can be roughly sorted into four cat-
egories [3], the point spread function model (PSFM) [4], the tur-
bulence degradation model (TDM) [5], the Jaffe-McGlamery model
(JMM) [6–8], and the foggy image degradation model (FIDM) [9,
10]. Among them, PSFM and TDM lack physical interpretability
correlated with the optical properties of seawater, and thus is not
suitable for the virtual simulation. JMM attempts to decompose the
light received by the underwater camera. and is the most widely used
underwater imaging model so far. However, because of different
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emphases in various usage scenarios [11–13], the formulas of JMM
are not uniform when used. Therefore, it is necessary to simplify
JMM when it is applied in underwater scene simulations. FIDM
regards the underwater image as a linear superposition of the anhy-
drous scene and the water body. It is mainly used for dark channel
prior based image dehazing. When FIDM works in an atmospheric
environment, it can accurately estimate the optical distance from the
camera to the object, but when applied to an underwater environ-
ment, it cannot accomplish this task well [14–16].

From the application aspect, the existing underwater scene sim-
ulation methods are mostly based on the FIDM and use distance fog
effect in game engines [17, 18]. For example, in [17], Liarokapis
et al. specify the fog effect’s color and density empirically and cal-
culate the loss and intensity of extra illumination by linear interpo-
lation. Thompson et al. [18] directly extract the color of the fog
effect from the reference photos. Although these application ori-
ented methods are able to simulate underwater scenes, they share
some common shortcomings, such as low controllability and lack of
physical interpretability.

To solve the aforementioned problems in the application-
oriented method, in this article, we propose a hybrid underwater
imaging model and build a Underwater Scene Simulation pipeline
in Unity based on this model, named USSim. Our contribution can
be summarized as follows:

1. A simulation-specific underwater optical imaging model is
proposed to build the distance fog in the game engines rather
than setting the distance fog empirically like other works,
which ensures our simulation methods with strong physical
interpretability.

2. We propose the simulation pipeline USSim, which to our
knowledge, is the first underwater environment simulation
pipeline in the game engines that applies the classification
criteria of the Jerlov water types. As a result, our USSim can
simulate underwater scenes independently without reference
images.

3. We also propose a strategy to calculate the color of under-
water ambient light. By decomposing the incident light into
three primary rays using color matching function, we avoid
the calculation of the entire continuous spectrum and thus re-
duce the computational complexity.

2. METHODOLOGY

In this section, the hybrid underwater imaging model which is the
basis of USSim will be given first in Sec. 2.1. Then, in Sec. 2.2 the
workflow of USSim will be presented briefly. Finally, in Sec. 2.3 we
will introduce the details of method designed to calculate the color
of underwater ambient light.
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2.1. A Hybrid Underwater Imaging Model

The proposed hybrid underwater imaging model in this article is
based on JMM [6–8] and FIDM [9, 10]. So, in this subsection, we
first briefly introduce JMM and FIDM, and subsequently present our
model.
Jaffe-Mcglamory Model. JMM divides the light received by the un-
derwater camera in the line of sightET into three components: 1) the
light directly reflected from the captured scene Ed, 2) the light that
reaches the camera after being scattered by small particles Ef , and
3) the light from the atmosphere and reflected by suspended particles
Eb. The relationship among these components and ET conforms to,

ET = Ed + Ef + Eb. (1)

As when the objects are relatively close to the camera, Ef has less
influence on underwater imaging thanEd andEb, so like other stud-
ies [19], we ignore Ef and only consider the rest.

When the camera and the object are in the same horizontal plane,
the received radiance of light ET can be obtained by,

ET = E(d, λ)e−β(λ)z +B∞(λ)(1− e−β(λ)z), (2)

where E(d, λ)e−β(λ)z represents the direct transmission light Ed
using the Beer-Lambert law [20] and B∞(λ)(1− e−β(λ)z) denotes
the backward scattering light Eb [21]; d, β(λ), λ, and z denote the
depth, the attenuation coefficient, the wavelength of the light, and
the distance of the optical path, respectively.
Foggy image degradation model. FIDM [9,10] is composed of two
parts, the attenuation component and the ambient light component.
It can be expressed as,

I(x) = J(x) · t(x) +A · (1− t(x)), (3)

where x means the coordinate of a pixel in the image,A is a constant
value of the ambient light from horizon sky, and I(·), J(·), and t(·)
return the foggy image, the fog-free image, and the transmittance,
respectively.

Although according to [9], t(x) is generally taken as e−βz(x) in
the atmosphere, in different usage scenarios such as dark channel
prior dehazing, t(x) can also be calculated with other forms [14].
A hybrid underwater imaging model. From Eq. 2 and Eq. 3,
we can have some useful findings that when combining the physical
meaning of JMM with the form of FIDM and making t = e−β(λ)z ,
we are able to construct a hybrid underwater imaging model which
is formed as,

I(λ) = J(λ) · e−β(λ)z +A(λ) · (1− e−β(λ)z), (4)

where I(λ) is the observed radiance representing the simulated un-
derwater scene, J(λ) is the anhydrous scene radiance, A(λ) is the
radiance of ambient light from backward scattering, β(λ), λ and z
are the same as defined in Eq. 2.

However, Eq. 4 is not suitable when simulating underwater
scenes by distance fog in the game engines, since calculations can
only be performed in the sRGB color space instead of the entire spec-
tra. When we use Eq. 4 to simulate underwater scenes in RGB chan-
nels separately, if β(λ) and J(λ) are small, the simulation scenes
will be reddish, which is unreasonable. Therefore, in practical appli-
cations, we simplify the Eq. 4 to the form as,

I(x) = J(x) · e−βz(x) +A · (1− e−βz(x)), (5)

where I(x) is the RGB color at a certain coordinate in the imaging
plane of the simulated underwater scene, J(x) is the RGB color of
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Fig. 1. The calculation of the underwater ambient light’s color A
involves three steps, color decomposition, attenuation calculation,
and color space transformation. First, the color of anhydrous in-
cident light is decomposed into the luminances of red, green, and
blue. Second, these luminances are converted into radiances to per-
form the attenuation calculation. Lastly, the radiances are converted
back to luminances to get coordinates in CIE RGB which are further
transformed to sRGB to obtain A.

the same coordinate in the anhydrous scene, A is the color of the
ambient light, and β is a constant value of the attenuation coefficient.
The methods of obtaining these variables will be introduced in the
following content.

2.2. The Underwater Scene Simulation Workflow

Our USSim consists of three stages: anhydrous scene construction,
ambient light’s color calculation, and distance fog generation.

In the anhydrous scene construction stage, we build an anhy-
drous scene in the game engine and select an observation camera.
Once the scene and the camera are determined, we can easily obtain
the color of the anhydrous scene J(x) and the distance from the tar-
get to the camera z(x) at any pixel x in the imaging plane. In the
ambient light’s color calculation stage, we use the water type, the
water depth, and the color of the incident light above the water sur-
face as variables to calculate the color of the ambient light A, and
use it as the color of the distance fog.

In the final stage of distance fog generation, we refer to Eq. 5,
use e−βz(x) to present the density of the fog effect, and add it to the
anhydrous scene to generate the underwater scene. To integrate the
different degrees of attenuation of the three wavelengths of RGB by
water, we use the following equation to calculate β as,

β =
R

R+G+B
βR +

G

R+G+B
βG +

B

R+G+B
βB , (6)

where (R,G,B) are the components of the ambient light’s color
A in the RGB channels, and βR, βG, and βB are the attenuation
coefficients in the case of the wavelengths of red, green, and blue
light, which can be obtained from [22].

2.3. Derivation of the Underwater Ambient Light

From Sec. 2.2, A is the only undetermined variable in Eq. 5. To
this end, we design a pipeline as shown in Fig. 1 to determine A.
The three parts of the pipeline, the decomposition of light, the calcu-
lation of attenuation, and the conversion of the color space, will be
introduced in this part.

2.3.1. Color Decomposition and Attenuation Calculation

Different wavelengths of light are attenuated differently, but simu-
lating the attenuation of the entire continuous spectra is too com-
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Table 1. Comparison of the controllable physical quantities.
λ z d E / L Kd β

Ours (USSim) 3 3 3 3 3 3
Liarokapis et al. [17] 3 7 3 7 3 7
Thompson et al. [18] 7 3 7 7 7 7

plicated and the data acquisition requirements are too high, so we
consider disassembling the sunlight from a discrete perspective.

According to the color matching function [23], light of any color
can be matched by the three primary colors, and the ratio of the three
primary colors can be expressed as tristimulus values, which are the
required luminosities of the three primary colors to achieve a color
match. So we use the color matching function to convert the D65
standard daylight simulation as the incident light into tristimulus val-
ues (IlR, IlG, IlB) representing luminosities.

However, the luminosity is only a subjective concept, to get an
absolute luminance, we must un-scale the values using a set of rela-
tive luminances via, 

r = IlR ·Rlr
g = IlG ·Rlg
b = IlB ·Rlb

, (7)

where r, g and b are the luminances, Rlr = 1, Rlg = 4.5907
and Rlb = 0.0601 mean the relative luminances.

The above-mentioned luminances are the intensity of light per
unit area of their source. Since luminance is independent of energy,
it cannot be directly used to calculate attenuation. So we need to
convert (r, g, b) to radiances (Lr, Lg , Lb), which represent the
radiant energy emitted per unit time in a specified direction by a unit
area of an emitting surface, with a simple linear relationship [24].
Then, according to the definition of downward diffusion attenuation
coefficient, the attenuation can be calculated via,

Lzr = Lr · e−Kdrd

Lzg = Lg · e−Kdgd

Lzb = Lb · e−Kdbd

, (8)

where d is the same as defined in Eq. 2; Kdr, Kdg and Kdb are
the coefficients of downward diffusion attenuation in the case of the
wavelengths of red, green, and blue light. Furthermore, we convert
(Lzr, Lzg, Lzb) back to luminances (rz, gz, bz) with a simple
linear relationship [24].

As a result, by adopting the pipeline above, we can obtain the
attenuation of the red, green, and blue components of the discrete
sunlight, and get their luminances (rz, gz, bz) after the attenuation.

2.3.2. Color Space Transformation

To obtain a specific color A, we still need to transform the lumi-
nances of red, green, and blue in the color space CIE RGB to the
color space sRGB.

The color space with RGB tristimulus values as coordinates is
called CIE RGB. Because there are negative numbers in the color
matching function [23], to facilitate the calculation, CIE proposed
a three-dimensional conversion matrix M to adjust all the tristimu-
lus values to positive numbers and thus construct CIE XYZ with all
coordinates in the range [0,1].

Jerlov I Jerlov Ia Jerlov Ib Jerlov II Jerlov III

Jerlov 1C Jerlov 3C Jerlov 5C Jerlov 7C Jerlov 9C

(a)

Water Depth Increased

W
ater D

ep
th In

creased

(b)

Fig. 2. (a) The simulation results of different Jerlov water types
under the same water depth (3m). (b) The simulation outputs of the
Jerlov II water with the depth from 0 to 14m. The depth gradually
increases from left to right and from top to bottom.

So we use the conversion matrix M to convert our (rz, gz, bz)
from Eq. 8 to the coordinate in CIE XYZ via,

[X Y Z]T =M [rz gz bz]
T . (9)

As CIE XYZ is independent of the camera equipment, it needs
to be further converted to sRGB for rendering. To fulfill this goal,
we need to transform CIE XYZ to sRGB in two steps [25]. First, the
unprocessed sRGB coordinates can be obtained by multiplying the
CIE XYZ coordinates via,

[rraw graw braw]
T = N [X Y Z]T , (10)

where [rraw, graw, braw]T is the unprocessed coordinate of a point
in sRGB and N is another conversion matrix. Second, the sRGB
coordinates are obtained by a piecewise function,

Ac =

{
12.92craw craw ≤ 0.0031308

1.055c
1

2.4
raw − 0.055 craw > 0.0031308

, (11)

where craw is rraw, graw or braw, Ac is Ar, Ag, or Ab and Ac ∈
[0, 1], and (Ar, Ag, Ab) are the values of RGB channels of A.

Using the above-presented pipeline, the color of underwater am-
bient light A can be determined according to the water types, the
water depth, and the incident light. Consequently, Eq. 5 can be used
to simulate the underwater color.

3. EXPERIMENTS AND DISCUSSIONS

In this section, we will evaluate the performance of our proposed
USSim from both qualitative and quantitative experiments.

3.1. Qualitative Experiments

We performed our qualitative experiments from two aspects: con-
trollability and simulation outputs.
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(a) (b) (c) (d)

Fig. 3. Comparison of the underwater scene simulations. The images
presented in (a)∼(c) are the simulation results of Liarokapis et al.’s
[17], Thompson et al.’s [18] and our approaches, respectively. (d)
Actual underwater images under similar conditions.

Table 2. Comparison of the average of image AuthESI values under
oceanic and coastal conditions.

oceanic AuthESI coastal AuthESI
Real images 3.253 2.075

Ours (USSim) 3.597 2.171
Liarokapis et al. [17] 4.068 3.978
Thompson et al. [18] 4.532 5.350

Analysis on controllability. To evaluate the controllability and the
ability of physical interpretation of the proposed USSim, according
to [22] and [26], some commonly used physical quantities related to
underwater imaging are analysed in this subsection. Among them,
d, β, λ and z are the same as defined in Eq. 2, Kd is the same as
defined in Eq. 8, and E (L) means the irradiance (radiance), which
represents the energy of the light. Two representative underwater
simulation piplines, Liarokapis et al.’s [17] and Thompson et al.’s
[18], widely used in game engines, are compared with our method
in terms of the above-mentioned physical quantities. The variable
usage of each scheme is listed in Table 1.

As shown, our USSim involves more physical quantities.
Among the three approaches in Table 1, both [17] and [18] use the
distance based fog effect to simulate the underwater environment,
but many of the quantities related to the fog effect is set empirically.
Thus, their simulations lack diversity. Instead, our simulation out-
puts can be customized by changing the water type to adjust Kd and
β, modulating d to control the attenuation, and regulating z to affect
the fog effect’s intensity, which makes our USSim more theoretical
and practical, and also guarantees the controllability.
Simulation performance on underwater scene. Assuming that the
incident light is D65 which is one of the standard daylight simula-
tions, our underwater scene simulation results are illustrated in Fig.
2. Moreover, USSim was compared with two competitors [17, 18],
with some simulation results and the samples listed in Fig. 3. All
simulation results are generated in Unity 2020.3.18f1c1 LTS.

In Fig. 2 (a), we show the simulation results of different Jerlov
water types. Jerlov categorized the ocean water into five oceanic
types (I, IA, IB, II, and III) and five coastal types (1C, 3C, 5C, 7C,
and 9C) in [27]. And in Fig. 2 (a), from left to right, the whole set
of pictures of Fig. 2 (a) is the oceanic and the coastal water in the
same sequences. As the water become more and more turbid, the
simulated scene gradually changed from blue to yellow-green, and
even to reddish brown. Fig. 2 (b) demonstrates some examples of
the simulation outputs of the Jerlov II water type with depths rang-
ing from 0 to 14m. As shown, with the water depth increasing, the
brightness of the color changes greatly, and the hue changes slightly.

In addition, the simulation results of the methods in [17] and [18]
as well as USSim under several underwater conditions are illustrated
in Fig. 3, where each row of the images represents the simulation
scenes and the sample photos under similar conditions. Since the
source codes of [17] and [18] were unavailable, we reproduced these
two methods according to their corresponding papers. Besides, we
set the colors of their fog effects directly from the sample photos,
and ignored some simulation skills such as the caustics, god rays,
etc., which had little to do with the underwater imaging models.
As shown in Fig. 3, it can be found that our USSim results appear
smoother and more natural.

3.2. Quantitative Experiments

The real underwater environment is affected by many factors and has
various characteristics in different regions, so there is still no perfect
standard to quantify the quality of the simulations results. But con-
sidering that the distance fog is commonly used in game engines to
simulate underwater scenes, we adopted the synthetic fog/hazy im-
age realism evaluator (AuthESI for short) proposed in [28] to objec-
tively evaluate the authenticity of the synthetic underwater images.
A smaller AuthESI value indicates a more natural simulated image.

With the above knowledge, we designed a quantitative experi-
ment. We divided underwater scenes into two types: oceanic envi-
ronment and coastal environment. For each environment, we used
our USSim to simulate 40 underwater images. The same operation
was also applied to Liarokapis et al.’s method [17] and Thompson
et al.’s method [18]. So there were 240 images in total. In addi-
tion, we collected 40 real underwater images for each environment
as control groups. Then we calculated the images’ AuthESI values
and got the averages of the 8 groups. The results are summarized
in Table 2, from which it can be seen that our USSim can generate
better simulation results in both oceanic and coastal environment.

4. CONCLUSION

In this article, to simulate the underwater scene, we take the wa-
ter type and the water depth as the main variables, decompose the
spectra of the incident light and design a pipeline to determine the
underwater ambient light, and propose a hybrid underwater imaging
model to fulfill this goal. Meanwhile, extensive experiments verify
the controllability of the proposed method. In addition, some under-
water color simulation results and the quantitative comparison also
demonstrate that our approach can perform well in underwater en-
vironment. In future research, we will devote our efforts to explore
more factors that affect the color of underwater imaging.
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