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ABSTRACT
In the camera equipment manufacturing industry, the expo-
sure calibration is one of the basic steps for manufacturers to
consider before launching their products to the market. To this
end, a method that can objectively and automatically assess
the exposure levels of images taken by the camera is highly
desired. However, few studies have been conducted in this
area. In this paper, we attempt to solve this issue to some
extent and our contributions are twofold. Firstly, in order to
facilitate the study of image exposure assessment, an Image
Exposure Database (IEpsD) is established. In this database,
there are 15,582 images with various exposure levels, and for
each image there is an associated subjective exposure score
which could reflect its perceptual exposure level. Second-
ly, we propose a novel highly accurate DCNN-based model,
namely IEpsM (Image Exposure Metric), to predict the ex-
posure level of a given image.

Index Terms— Exposure levels, image quality assess-
ment, deep convolutional neural networks

1. INTRODUCTION

For many years, photogrammetry researchers, camera equip-
ment manufacturers and recently, computer vision researchers
have taken the camera calibration issue into consideration [1].
During this camera calibration process, camera exposure pa-
rameters need to be adjusted to eliminate the exposure distor-
tion in images. However, currently the commonly used meth-
ods to determine whether an image is properly exposed or not
are totally based on the experience of photographers, which
is time-consuming, cumbersome, and cannot be implemented
in systems where a real-time exposure level score is needed.
Therefore, it is necessary to develop an image exposure met-
ric to evaluate the image exposure level automatically, so as to
become an objective index for camera exposure calibration.

In this paper, we attempt to address the problem of IEA
(Image Exposure Assessment) to some extent. Our goal is to
design an algorithm that could automatically and efficiently
evaluate the exposure level of a given image and the evalua-
tion results should be consistent with the human perception.
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Fig. 1. (a)∼(f) are 6 images with various exposure levels.
Their exposure scores predicted by our approach IEpsM are
1.0115, 2.0219, 2.9686, 4.1119, 5.2048, and 6.3953, respec-
tively. The output range of IEpsM is from 1 to 7. “1” means
the image is extremely underexposed, “4” means it is properly
exposed, and “7” means it is extremely overexposed.

To demonstrate our goal more clearly, in Fig. 1, we show 6
images along with their exposure scores predicted by our pro-
posed approach IEpsM (see Sect. 3 for details). It needs to
be noted that the predicted exposure scores by IEpsM can
vary from 1 to 7. “1” means that the image being examined
is extremely underexposed, “4” means that it is properly ex-
posed, and “7” means that it is extremely overexposed. Using
IEpsM , the predicted exposure scores of Figs. 1(a)∼1(f) are
1.0115, 2.0219, 2.9686, 4.1119, 5.2048, and 6.3953, respec-
tively. It can be seen that the assessment results of the images’
exposure levels by using IEpsM are highly consistent with
the perceptual evaluation.

1.1. Related work

The most popular research area closely related with image
exposure is referred to as High Dynamic Range (HDR) imag-
ing or multi-exposure fusion, which is in order to enhance the
dynamic range of an image by combining details in images
taken under different exposures [2]. Another research area

978-1-5386-1737-3/18/$31.00 c©2018 IEEE



(a) (b) (c)

(d) (e) (f)

Fig. 2. (a)∼(c) show three images having the same contents
but different exposure levels, along with their luminance his-
tograms. (a) is properly exposed, while (b) and (c) are overex-
posed and underexposed, respectively. (d)∼(f) are three im-
ages that are all properly exposed; however, their luminance
histograms are quite different from each other due to their d-
ifferent contents.

related to image exposure is to enhance image quality by op-
timizing the exposure decision in digital cameras [3]. In both
of these two research areas, image exposure is considered as
a controllable parameter that can be modulated by acquisition
parameters, including aperture, ISO, and exposure time. The
open issue is how to quantify the overall image exposure level
by an automatic algorithm and how the quantification results
correlate with the human perception.

At present, there exist some unsystematic methods to e-
valuate the image exposure level. In fact, the human experi-
ence suggests that the image histogram could reflect the im-
age exposure level to some extent. According to this hypoth-
esis, in [4], Efimov et al. evaluated the image exposure level
by blocking the image and analyzing the luminance histogram
of each image block. Based on the similar idea, Liu et al. [5]
used the histogram distribution and relevant luminance fea-
tures of images that are properly exposed to determine and
adjust the exposure level of a given image. To better evaluate
the presented method, Romaniak et al. [6] firstly proposed an
exposure generation model by analyzing the mapping func-
tion between the image color saturation and the image expo-
sure level to generate an experimental dataset. And then they
designed an image exposure metric by analyzing the shape of
the given image’s histogram.

One shared drawback of the aforementioned IEA ap-
proaches [4–6] is that they are susceptible to the specific
image content due to the histogram-based hypothesis. In
this hypothesis, they simply associate image exposure lev-
els with corresponding luminance histograms. As shown in
Figs. 2(a)∼2(c), the three images have the same image con-
tent, while because of their different exposure levels, their his-
tograms show different distribution patterns. For a properly
exposed image Fig. 2(a), its histogram spreads over the whole

range of the luminance, while histograms of over- and under-
exposed images are shifted to the right and the left side, re-
spectively, as shown in Fig. 2(b) and Fig .2(c). Those existing
methods [4–6] are just based on the hypothesis that the his-
tograms have a strong direct link with image exposure levels.
However, this hypothesis becomes questionable when applied
to images of various contents. As shown in Figs. 2(d)∼2(f),
the three images are all properly exposed, but their histogram
distribution patterns are quite different due to their different
image contents. That is to say, although the three given im-
ages are all properly exposed, the histogram-based hypothe-
sis would lead to false judgements since the image histograms
could be seriously influenced by specific image contents.

1.2. Our motivations and contributions

Having investigated the literature, we find that in the field
of IEA, there is still a large room for further improvemen-
t in at least two aspects. Firstly, though the problem of IEA
is of paramount importance and has great demand for cam-
era exposure calibration, systematic studies in this area are
quite rare. Hence, it is still a challenging open issue to devel-
op a systematic method to assess image exposure. Secondly,
for training and testing IEA algorithms, a public large-scale
benchmark dataset, comprising images with different expo-
sure levels and associated subjective scores, is indispensable.
Unfortunately, such a dataset is still lacking in this area.

In this work, we attempt to fill the aforementioned re-
search gaps to some extent. Our contributions are summa-
rized as follows:

(1) To facilitate the study of IEA, we have estab-
lished a benchmark dataset, namely IEpsD (Image Exposure
Database), and will make it publicly available. This dataset
comprises 15,582 images with different exposure levels, in-
cluding 1,512 collected real-world images and 14,070 artifi-
cial images generated using our proposed exposure simula-
tion algorithm. Each image in IEpsD has an associated sub-
jective score reflecting its exposure level. In our experiments,
IEpsD’s artificial images are used for training and validating
IEA models, while its real-world images are used for testing.
Please refer to Sect. 2 for more details about IEpsD.

(2) Recent years, the deep convolutional neural net-
works (DCNN) have gained researchers much attention and
achieved great success for numerous computer vision tasks.
In this paper, we make an attempt to adopt DCNN to solve the
IEA problem. Consequently, a novel DCNN-based approach,
namely IEpsM (Image Exposure Metric), is proposed to ob-
jectively assess the given image’s exposure level. The efficacy
and efficiency of IEpsM have been thoroughly evaluated in
experiments.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the construction of IEpsD. Section 3 de-
scribes the details of IEpsM . Experimental results are re-
ported in Section 4. Finally, Section 5 concludes the paper.



2. IEPSD: AN IMAGE EXPOSURE DATABASE

In this section, the establishment of our image exposure
database IEpsD is presented. Totally, IEpsD has 15,582 im-
ages with different exposure levels taken from a wide variety
of shooting scenes, and for each image there is an associated
subjective exposure score indicating its perceptual exposure
level.

To fulfill this task, the construction of IEpsD mainly
comprises three steps, including real-world images collection,
artificial images generation, and subjective evaluation. De-
tails are introduced in the following subsections.

(a) (b)

(c) (d)

(e) (f)

(g)

Fig. 3. (a)∼(g) are 7 images in R with different image ex-
posure levels taken from one Outdoor Scenery scene. From
(a)∼(g), the exposure levels are changing from “extremely
underexposed” to “extremely overexposed”.

Table 1. Shooting scenes for real-world images collection

Building Scenery Human Plant
Indoor (with man-made
light) 6 * 6 3 3

Indoor (without man-
made light) 6 6 3 3

Outdoor 12 12 6 6

* Choose 6 different locations of Indoor Building with
man-made light to form 6 scenes.

2.1. Real-world images collection

As stated in Sect. 1, since there is no systematic method in the
field of IEA, we are motivated to fill the research gap to some
extent by building up IEpsD at first. In [6], Romaniak et al.
designed an image exposure generation model for artificial-
ly generating images with various exposure levels. Howev-
er, they failed to take real-world images into account. In our
dataset, we include real-world images with different exposure
levels, which can help evaluate the effectiveness of IEA algo-
rithms on real data.

At this step, we used digital cameras to collect real-world
images with diverse exposure levels. In general, exposure is
the total amount of light allowed to fall on a photographic
medium during the process of taking a photograph and there
are basically three methods to control exposure in digital cam-
eras. The first way is by opening or closing the aperture. The
larger the hole of the iris, the more light is reaching image
sensors during a fixed period of time. The second way is by
changing the light signal boost, which is commonly referred
to as ISO sensitivity. The last way is to change the expo-
sure time. For different shooting scenarios, the most straight-
forward strategy to obtain similar exposure levels is to only
adjust one of the above factors and keep other camera param-
eters fixed.

Furthermore, it is necessary to collect real-world images
from all kinds of common scenes, as many as possible, in
order to verify the algorithm’s robustness in dealing with var-
ious image contents. Therefore, we draw up a collection plan
as shown in Table 1, to include common scenes. Specifically,
we selected 4 types of shooting objects and 3 types of shoot-
ing occasions, which altogether form 72 different scenes, to
cover the most common application scenarios. For each occa-
sion, we took the distance-view, close-shot, medium-shot and
macro-mode into account. For each scenario, we captured
21 photos under 7 exposure levels, 3 images each, by adjust-
ing the exposure time. Finally, we collected 1,512 (72 × 21)
real-world images and we denote the dataset formed by these
real-world images by R. 7 sample images of R, taken from
the scene, are shown in Fig. 3. From Figs. 3(a)∼3(g), the
exposure levels are changing from “extremely underexposed”
to “extremely overexposed”.



2.2. Artificial images generation

The on-spot data collection is quite time-consuming and la-
borious. However, in order to obtain a prediction model with
a high generalization capability, a large-scale dataset is indis-
pensable. To cope with this contradiction, a novel method for
simulating images with various exposure levels from source
properly exposed images is proposed.

Suppose that I is a source properly exposed image. Its
variant Î having a different exposure level could be generated
by adjusting I’s illumination and saturation channels. To ma-
nipulate its illumination and saturation channels separately, I
is firstly transferred from the RGB space to the HSV space.
Denote by Iv and Is the illumination channel and the satu-
ration channel of I , respectively. Similarly, we denote by Îv
and Îs the illumination channel and the saturation channel of
Î , respectively. Îv is obtained by adjusting Iv as,

Îv(x) = Iv(x) + C1 (1)

where x indicates the spatial location and C1 is a tunable
parameter. For simulating overexposed images, C1 should
be positive, while for simulating underexposed images, C1

should be negative. In the meanwhile, we also need to adjust
Is to Îs according to the mapping function as suggested by
Romaniak et al. [6],

Îs(x) = (
eln Is(x)2.5−ln(1−Is(x)2.5)+C2

1 + eln Is(x)2.5−ln(1−Is(x)2.5)+C2
)0.4 (2)

where C2 is a tunable parameter. For simulating overexposed
images, C2 needs to negative, while for simulating underex-
posed images, C2 needs to be positive.

By adjusting the parameter settings, a series of I’s vari-
ants with different exposure levels can be simulated. In our
experimental settings, 7 exposure levels were created. That is
to say, from each source properly exposed image, we gener-
ated 7 its variants (including itself) having different exposure
levels, ranging from “extremely underexposed” to “extremely
overexposed”. In Fig. 4, (a) shows one sample source image
while (b)∼(g) are its variants with different exposure levels
simulated by our proposed algorithm. Figs. 4(b)∼4(d) are
underexposed images while Figs. 4(e)∼4(g) are overexposed
ones. It can be seen that the simulation results using our al-
gorithm correlate well with the perceptual evaluation.

For establishing IEpsD, 2,010 properly exposed images
were collected from the Internet, which cover all the scenes
listed in Table 1. Taking them as source images, 14,070 (2010
× 7) images covering a wide range of exposure levels were
simulated using our algorithm. We denote by A the dataset
formed by them.

2.3. Subjective evaluation

After collecting and generating images with various image
exposure levels, the exposure scores of images, which could

(a)

(b) (c) (d)

(e) (f) (g)

Fig. 4. (a)∼(g) are 7 images in A with different image ex-
posure levels simulated from one properly exposed image
(a) using our proposed exposure level simulation algorithm.
(b)∼(d) are underexposed images and (e)∼(g) are overex-
posed ones.

reflect the corresponding exposure levels, were evaluated by
human subjective judgements. We firstly offered a uniform
standard for evaluators to give the images exposure scores
based on their own perceptions.

In our experiment, we employed a 7-point system, with
which the subjective scores given by an individual were inte-
gers ranging from 1 to 7. The closer the score is to 4 point,
the more likely the image is of proper exposure, while the s-
core below 4 means it is underexposed and the score beyond
4 means it is overexposed. For each image, there are 10 raw
subjective evaluations. Sample images with typical differen-
t exposure levels were demonstrated to the evaluators before
the subjective test. A single-stimulus continuous quality eval-
uation [7] was conducted.

Then, we performed some postprocessing steps to the raw
scores. At first, we filtered out those heavily biased subjective
scores that satisfy

dij − dj > T · σj (3)

where dij is the exposure score of the image Ij given by the
i th evaluator, dj is the mean score of Ij , T is the threshold
constant and σj is the standard deviation value of Ij’s scores.
Then, to eliminate the influence of different subjective evalua-
tion standards of evaluators, the raw scores dij were converted
as,

zij =
dij − di
σi

(4)

where di is the mean score of the i th evaluator and σi is the
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Fig. 5. A residual block.

standard deviation of his/her scores for all images. We regard
the mean of the evaluation scores of Ij as its final subjective
exposure score sj ,

sj =
1

Nj

∑
zij (5)

where Nj is the number of the subjective scores for Ij .
Now, for each image Ij in IEpsD, an associated subjec-

tive score sj reflecting its exposure level is obtained.

3. IEPSM : A DCNN-BASED IMAGE EXPOSURE
METRIC

In this paper, we propose a DCNN-based image exposure
metric, namely IEpsM . Inspired by the great performance
in categorizing different illumination patterns on faces [8]
which, as we do, focuses on the illumination component of
the image, we employ the Deep Residual Networks [9] as
well. The key idea of [9] is to take a standard feed-forward
ConvNet and add skip connections that bypass (or shortcut) a
few convolution layers at a time. Each bypass gives rise to a
residual block in which the convolution layers predict a resid-
ual that is added to the blocks input tensor. A residual block
is shown in Fig. 5.

In IEpsM , we select ResNet-50 for its suitable depth and
complexity to solve the problem of IEA. And we adjust the
neural network structure by changing the final output number
into 1 and the loss layer into EuclideanLoss so that it could
solve the regression problem. As required by the structure
of ResNet, the input image needs to be resized to 224×224
before being fed into ResNet.

IEpsM was trained on the training set of IEpsD. The
base learning rate was 0.001 and learning rate policy was
“inverse policy” to decrease the learning rate with iterations.
With respect to the optimization solver, we resorted to ADAM
[10].

Table 2. Performance comparison with IEA algorithms

METHOD SROCC KROCC
Method in [6] 0.8669 0.7276
IEpsM 0.9540 0.8532

4. EXPERIMENTAL RESULTS AND DISCUSSIONS

Our established dataset IEpsD as described in Sect. 2 was
explored to train IEpsM and to evaluate the prediction per-
formance of different IEA algorithms. It needs to be noted
that in order to test the validity of our proposed exposure lev-
el simulation algorithm, when training IEpsM , only the im-
ages of subset A (images in A were simulated from source
properly exposed images) were used. Specifically, images in
A associated with 70% of the source images were used as the
training set and the remaining ones inA were used as the val-
idation set. We regarded the real-world image dataset R of
IEpsD as the test set to validate the IEA algorithms’ effec-
tiveness for dealing with real-world images.

To evaluate the performance of competing IEA methods,
we adopt two correlation coefficients to measure the mono-
tonic coherency between the prediction results and the sub-
jective scores: Spearman rank-order correlation coefficien-
t (SROCC) and Kendall rank-order correlation coefficien-
t (KROCC). A value closer to 1 indicates a better result of
exposure level estimation for both indices.

4.1. Comparisons with other exposure metrics

As mentioned in Sect. 1.1, studies particularly focusing on the
IEA problem are quite sporadic. And considering the similar
basic hypothesis used in [4–6], we chose to implement the
algorithm in [6] for comparison because of its integrity and
reproducibility. In Table 2, we list the two correlation coeffi-
cients, SROCC and KROCC, achieved by each method on the
test set of IEpsD.

4.2. Comparisons with NR-IQA methods

To some extent, the IEA problem can also be considered as
a special kind of NR-IQA (No-Reference Image Quality As-
sessment) problem. NR-IQA algorithms aim to automatically
evaluate the overall quality of a given image. Hence, in our
experiment, we also compared IEpsM with several state-of-
the-art NR-IQA approaches, including BRISQUE [11], NIQE
[12], SSEQ [13], LPSI [14], ILNIQE [15], TCLT [16], and
OG-IQA [17]. The evaluation results on the test set of IEpsD
in terms of SROCC and KROCC are summarized in Table 3.

4.3. Discussion

The results listed in Table 2 lead us to the following conclu-
sions. First, IEpsM achieves a high SROCC (above 0.95) on



Table 3. Performance comparison with NR-IQA methods

METHOD SROCC KROCC
NIQE [12] 0.0638 0.0455

IL-NIQE [15] 0.0658 0.0490
SSEQ [13] 0.4460 0.3276
LPSI [14] 0.5175 0.4133
TCLT [16] 0.5792 0.4390

BRISQUE [11] 0.5930 0.4536
OG-IQA [17] 0.7991 0.5883
IEpsM 0.9540 0.8532

the test set, which suggests that it has a high accuracy for pre-
dicting the perceptual exposure levels for real-world images.
Second, it needs to be stressed that when training IEpsM ,
only the subset A, whose images were generated using our
exposure level simulation algorithm, was used and none im-
properly exposed real-world images was involved. This fact
indirectly proves the validity of our algorithm for simulating
different exposure levels. Third, IEpsM performs much bet-
ter than the method in [6], which is in line with the shortcom-
ing analysis in Sect. 1.1 about the histogram-based hypothe-
sis.

The superiority of our method IEpsM over the other
competitors in NR-IQA can be clearly observed from Table
3. The evaluation results also indicate that though the predic-
tions of NR-IQA algorithms can reflect the general quality of
images, they cannot faithfully measure the distortions aroused
by improper exposures. Thus, it is more suitable to solve the
IEA problem with a specifically designed method rather than
a general-purpose one.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we focus on addressing the problem of Image
Exposure Assessment. Our contributions are twofold. First,
to facilitate the study of exposure levels prediction for images,
we have constructed a database, namely IEpsD. It compris-
es 15,582 images and each one is assigned an exposure score
evaluated through human judgements. Second, we proposed
a DCNN-based model IEpsM to predict the image’s expo-
sure level whatever the content of the image is. Experiments
conducted on IEpsD show that the proposed metric IEpsM
outperforms all its competitors by a large margin, making it
quite attractive for real applications. In the future, we would
try to embed the proposed method in camera equipments.

6. ACKNOWLEDGMENTS

This work was supported in part by the Natural Science Foun-
dation of China under grant no. 61672380 and in part by the
Fundamental Research Funds for the Central Universities un-
der grant no. 2100219068.

7. REFERENCES

[1] M.H. Saeifar and M.M. Nia, “Camera calibration: An
overview of concept, methods and equations,” IJERA, vol. 7,
no. 7, pp. 49–57, Jul. 2017.

[2] P. Ke, C. Jung, and Y. Fang, “Perceptual multi-exposure image
fusion with overall image quality index and local saturation,”
MMSys, vol. 23, no. 2, pp. 239–250, 2017.

[3] H.J. Park and H.H. Dong, “The optimum exposure decision
for the enhanced image performance using a digital camera,”
in IST, 2010, pp. 333–336.

[4] S. Efimov, A. Nefyodov, and M. Rychagov, “Block-based
image exposure assessment and indoor/outdoor classification,”
GraphiCon, pp. 23–27, Jun. 2007.

[5] M. Liu, P. Yuan, and R.S. Turner, “Automatic analysis and
adjustment of digital images with exposure problems,” U.S.
Patent 7,646,931, Dec. 2008.

[6] P. Romaniak, L. Janowski, M. Leszczuk, and Z. Papir, “A no
reference metric for the quality assessment of videos affected
by exposure distortion,” in ICME, 2011, pp. 1–6.

[7] B.T. Itu-R, “Methodology for the subjective assessment of the
quality of television pictures,” ITU, Apr. 2005.

[8] L. Zhang, L. Zhang, and L. Li, “Illumination quality assess-
ment for face images: A benchmark and a convolutional neural
networks based model,” in ICONIP, 2017, pp. 583–593.

[9] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in CVPR, 2016, pp. 770–778.

[10] D.P. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” in ICLR, 2014.

[11] A. Mittal, A.K. Moorthy, and A.C. Bovik, “No-reference im-
age quality assessment in the spatial domain,” IEEE Trans. IP,
vol. 21, no. 12, pp. 4695–4708, 2012.

[12] A. Mittal, R. Soundararajan, and A.C. Bovik, “Making a com-
pletely blind image quality analyzer,” IEEE SPL, vol. 20, no.
3, pp. 209–212, 2013.

[13] L. Liu, B. Liu, H. Huang, and A.C. Bovik, “No-reference im-
age quality assessment based on spatial and spectral entropies,”
Signal Processing: Image Communication, vol. 29, no. 8, pp.
856–863, 2014.

[14] Q. Wu, Z. Wang, and H. Li, “A highly efficient method for
blind image quality assessment,” in ICIP, 2015, pp. 339–343.

[15] L. Zhang, L. Zhang, and A.C. Bovik, “A feature-enriched com-
pletely blind image quality evaluator,” IEEE Trans. IP, vol. 24,
no. 8, pp. 2579, 2015.

[16] Q. Wu, H. Li, F. Meng, K.N. Ngan, B. Luo, C. Huang, and
B. Zeng, “Blind image quality assessment based on multichan-
nel feature fusion and label transfer,” IEEE Trans. CSVT, vol.
26, no. 3, pp. 425–440, 2016.

[17] L. Liu, Y. Hua, Q. Zhao, H. Huang, and A.C. Bovik, “Blind
image quality assessment by relative gradient statistics and ad-
aboosting neural network,” Signal Processing: Image Commu-
nication, vol. 40, no. C, pp. 1–15, 2016.


