
Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

Image set classification based on synthetic examples and reverse training

Lin Zhanga,b,⁎, Qingjun Lianga, Ying Shena, Meng Yangc, Feng Liuc

a School of Software Engineering, Tongji University, Shanghai, China
b Shenzhen Institute of Future Media Technology, Shenzhen, China
c School of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China

A R T I C L E I N F O

Keywords:
Face recognition
Image set classification
Reverse training

A B S T R A C T

Classification based on image sets has recently attracted increasing interests in computer vision and pattern
recognition community. It finds numerous applications in real-life scenarios, such as classification from
surveillance videos, multi-view camera networks, and personal albums. Image set based face classification
highly depends on the consistency and coverage of the poses and view point variations of a subject in gallery and
probe sets. This paper explores a synthetic method to create the unseen face features in the database, thus
achieving better performance of image set based face recognition. By considering the high symmetry of human
faces, multiple synthetic instances are virtually generated to make up the missing parts, so as to enrich the
variety of the database. With respect to the classification framework, we resort to reverse training due to its high
efficiency and accuracy. The performance of the proposed approach, Synthetic Examples based Reverse Training
(SERT), has been fully evaluated on Honda/UCSD, CMU Mobo and YouTube Celebrities, three benchmark
datasets comprising facial image sequences. Extensive comparisons with the other state-of-the-art methods
have corroborated the superiority of our approach.

1. Introduction

Image classification has attracted much attention from researchers
recently since it has many significant potential applications [1–5]. As a
special kind of image classification problems, face recognition has been
studied for decades [6–9]. Traditional face recognition can be regarded
as a single image classification problem. With the significant develop-
ment in imaging technology, multiple images of a person are becoming
readily available in a number of real-world scenarios, such as video
surveillance, multi-view camera networks, and personal albums col-
lected during a period of time. Face recognition based on multiple
images can be formulated as an image set classification problem, where
each set contains images belonging to the same person but covering a
wide range of variations. These variations could be caused by illumina-
tion variations, viewpoint variations, different backgrounds, expres-
sions, occlusions, disguise, etc. More robust and promising face
recognition can be expected by using image sets since they contribute
more information than one single image.

In the past decade, the image set based recognition has gained
significant attention from the research community. Generally speaking,
there are two major steps involved in image set classification, to find a
suitable representation of the images in the set and to define an
appropriate distance metric for computing the similarity between these

representations. According to the types of representations, existing
image set classification methods can be classified into two categories,
parametric model based methods and non-parametric model based
methods [10,11].

Parametric-model based approaches tend to utilize a specific
statistical distribution model to represent an image set and measure
the similarity between two distribution models using KL-divergence
[12,13]. The main drawback of such methods is that they may fail to
produce a desirable performance if there is no strong statistical
relationship between the training and the test image sets.

Unlike parametric-model based methods seeking for global char-
acteristics of the sets, non-parametric model based ones put more
emphasis on matching local samples. They do not model image sets as
statistical distributions. Instead, they attempt to find the overlapping
views between two sets and measure the similarity upon those parts of
data. Non-parametric model based approaches have shown promising
results and have received much attention recently. Several representa-
tive ones belonging to this category will be briefly reviewed here.

For non-parametric model based methods, there are usually two
ways to represent an image set, either by its representative exemplars
or by a point on a geometric surface. Then, different distance metrics to
determine the between-set distance will be defined with respect to
different types of representations. For image sets represented by
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representative exemplars, usually the Euclidean distance between the
set representatives is regarded as the set-set distance. The set
representatives can simply be the set mean or adaptively learned set
samples [14–17]. In [14], Cevikalp and Triggs learned the representa-
tive set samples from the affine hull or convex hull models of the set
images and accordingly the set-set distance is termed as Affine Hull
Image Set Distance (AHISD) or Convex Hull Image Set Distance
(CHISD). In Hu et al.’s approach [15], the SANPs (Sparse
Approximated Nearest Points) of two sets are first determined from
the mean image and the affine hull model of the two corresponding
sets. After that, SANPs are sparsely approximated by the set's sample
images and then the closest points between sets can be obtained. The
set-set distance is computed as the Euclidean distance between two
closest SANPs of the two sets. In [16], by representing the image set as
a nonlinear manifold, Hadid et al. extracted exemplars from the
manifold using Locally Linear Embedding (LLE) and k-means based
clustering. In [17], Yang et al. modeled an image set as a regularized
affine hull (RAH) and then two regularized nearest points (RNP), one
for each RAH, are automatically computed. Then, the between-set
distance was computed as the modulated distance between RNPs by
the structure of image sets. One potential drawback of the set
representative based methods is that their performance is highly
sensitive to outliers. In addition, they are also computationally very
expensive since a one-to-one match of the query set with all the gallery
sets is required. Hence, these methods run very slowly when the size of
the gallery set is quite large.

Different from exemplar-based methods, some other non-para-
metric model based approaches attempt to represent an image set by
a point on a geometric surface. Using these methods, an image set can
be represented by a subspace [18–22], a combination of subspaces
[23–26], or a point on a complex nonlinear manifold [27–31]. For
methods using a linear subspace to represent an image set, the angles
between two subspaces, which mainly characterize the common modes
between variations of the two subspaces, are commonly used as a
similarity measure. For manifold-based image set representations,
appropriate distance metrics have been developed, such as the geodesic
distance [32], the projection kernel metric [33] on the Grassmann
manifold, the log-map distance metric [34] on the Lie group of
Riemannian manifold, or even learned by some distance metric

learning techniques [35]. In order to discriminate image sets on the
manifold surface, different learning strategies have been proposed,
including Discriminative Canonical Correlations (DCC) [18], Manifold
Discriminant Analysis (MDA) [28], Graph Embedding Discriminant
Analysis (GEDA) [27], Covariance Discriminative Learning (CDL) [31].
In [36], Hayat et al. tried to keep every example independent and to
remain the image set in its original form rather than seeking a global
representation. They argued that whatever form you use, once you
model a set as a single entity, there must be loss of information. For
image set classification, they proposed a reverse training scheme. With
the reverse training scheme, the classifier is trained with the images of
the query set (labeled as positive) and a randomly sampled subset of
the training data (labeled as negative). The trained classifier is then
evaluated on rest of the training images. The class of the images with
their largest percentage classified as positive is predicted as the class of
the query image set. Quite recently, Hayat et al. introduced a deep
learning based framework to deal with the image set classification
problem [10,11]. Specifically, a Template Deep Reconstruction Model
(TDRM) is defined and initialized by performing an unsupervised pre-
training in a layer-wise fashion. The initialized TDRM is then sepa-
rately trained for images of each class and class-specific DRMs are
learned. At the testing stage, the classification is performed based on
the minimum reconstruction errors from the learned class-specific
models. Also based on deep learning, Shah et al. proposed an Iterative
Deep Learning Model (IDLM) that could automatically and hierarchi-
cally learn discriminative representations from raw face and object
images [37].

Based on the literature review, we found that all the aforemen-
tioned methods mainly focus on devising effective classifiers for image
sets. They implicitly make an assumption that the distribution of a
person's poses and view points in a probe image set are similar to those
in the gallery image set. However, it is sometimes the case that there is
pose or view point mismatch between the gallery and probe image sets
of the same subject. In such case, the probe image set is more likely to
be misclassified as the class containing images with the same head pose
as the probe set but actually from a different subject. In Fig. 1, we use a
vivid example to illustrate this phenomenon. We suppose that there are
three classes A, B, and C in the gallery set and they are denoted by GA,
GB, and GC, respectively. Suppose that images from GA and GC have

Gallery set
from Class A

Gallery set from
Class C

Gallery set 
from Class B

Query set from Class B is more easily
classified as Class A and Class C

…
…

… …

Query set from Class B

Fig. 1. Images in the query set from class B have different poses from the images in the gallery set from class B. However, their poses are quite similar to the images in the gallery set
from classes A and C. The query set from class B is more likely to be misclassified as A or C.
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similar poses while their poses are quite different from images in GB.
At the test stage, a query set, comprising images actually belonging to
class B, comes and is denoted by QB. In this example, images in QB
have quite different poses from images in GB, but similar poses with
images in GA and GC. Hence, it is highly possible that the image set QB
will be misclassified as class A or class C.

In this paper, to solve such a problem, we propose a simple yet
effective approach by synthesizing more samples for each image set. In
this way, the variety of poses and viewpoints within an image set can be
explicitly enriched. With respect to the classification framework, we
resort to Reverse Training [36] since it is a concept-simple and effective
approach to deal with the image set classification problem. The
proposed method is named as Synthetic Examples based Reverse
Training, SERT for short. Our method can deal with the pose and the
view point mismatch in video based face recognition quite well. SERT
is evaluated against the state-of-the-art image set classification meth-
ods and found to have superiority over them.

The rest of this paper is organized as follows. Section 2 discusses
how to generate synthetic examples. Section 3 describes the reverse
training method for image set classification and an overview of SERT.
Section 4 presents the experimental results. Finally, Section 5 con-
cludes the paper.

2. Image set feature extraction

We propose a face sample synthesizing method in which the
symmetry property of the human face is fully exploited. The proposed
approach is inspired by [36]. In [36], Hayat et al. pointed out that
based on the manual inspection of the most challenging YouTube
Celebrities dataset [38], a great amount of misclassified query image
sets have a common characteristic that their head poses are not covered
in the corresponding training sets. Fig. 2 shows a challenging example
in Youtube Celebrities dataset. Fig. 2(a) shows images in one training
image set and Fig. 2(b) shows images in the corresponding test image
set. In this example, images in the test set and training set have quite
different facial poses, which raises a great challenge to the set
classification algorithms. To address this issue, here we present our
solution.

2.1. Synthesizing examples and extracting block-wise LBP based
features

We create synthetic examples to enrich the set variations, by
operating directly in “data space”. For each sample in an image set,
we first flip the image horizontally and get another symmetric version
of the original face. To determine the necessity of this flipping step, we
use the Euclidean distance metric to measure the similarity between
the original face and the flipped one. A threshold is empirically set. If
the distance is less than the threshold, we neglect the flipped face since
the original face itself has a good symmetry. Otherwise, we add the new
flipped face to the image set and therefore augment the number of
instances in all sets.

With respect to feature extraction, we propose to use a block-wise
LBP (Local Binary Patterns [39]) based scheme. Specifically, each face
image is at first uniformly partitioned into k×k blocks and then an LBP
histogram is extracted from each block. After normalizing each
histogram, all the normalized histograms are concatenated together
as the final feature vector. Such a feature extraction procedure is quite
robust to image noise since LBP is actually an ordinal feature, simply
depending on the signs of pixel differences. Actually, LBP has three
classical mapping table: (1) uniform LBP (‘u2’), (2) rotation-invariant
LBP (‘ri’), and (3) uniform rotation-invariant LBP (‘riu2’). Here we
adopt the uniform LBP (‘u2’), whose binary pattern contains at most
two bitwise transitions from 0 to 1 (or 1 to 0). There are totally 2 cases
for zero transition and 56 cases for 2 transitions (1 transition is
impossible) when the sampling density is 8. All the non-uniform LBPs
that contain more than two transitions are labeled as the 59th bin.
Details of our feature extraction scheme are summarized in Table 1.

As for rotation-invariant LBP (‘ri’), the number of patterns is largely
filtered out and only 36 conditions/bins are remained, which is to some
degree not sufficient to express the texture details of a face. For
uniform rotation-invariant LBP (‘riu2’), the patterns are reduced even
more with only 10 conditions/bins reserved, having the same defects as
‘ri’. That explains why we don’t use those two mapping tables.

Since we use block-wise LBPu2 8,1 based feature extraction scheme
which is not rotation invariant, the flipped image must have a different
LBP value from its original one. An intuitive illustration can be seen in
Fig. 3. Imagine the case that a training set only comprises left profile
faces, while its corresponding upcoming test set only consists of right
profile faces. It is obviously that the original gallery and probe set are

Fig. 2. A challenging example in YouTube Celebrities dataset. (a) shows images in one training set while (b) shows images in the corresponding test set.
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hard to match to each other. However, after we create synthetic
examples, both gallery and probe set contains left and right profile
features, making later classification much easier.

2.2. SMOTE and PCA whitening

The number of instances varies a lot from set to set. Such an uneven
distribution will lead to bias in the classification stage especially for
those methods who do not represent the image set as a whole entity. To
solve this problem, here we use the Synthetic Minority Oversampling
TEchnique (SMOTE) proposed by Chawla et al. [40] to oversample the
minority class and create synthetic training examples. For each training
sample of the minority class, we take the difference between the sample
and its nearest neighbor. Then the difference is multiplied with a
random number between 0–1 and added to the original example to get
the synthesized sample. In this way, we can get a synthetic sample lying
on the line connecting the original sample and its nearest neighbor.
The total number of required synthetic samples can be controlled by
the number of nearest neighbors considered for each sample and the
number of points generated on the line connecting the original sample
and its nearest neighbor.

With our feature extraction scheme, histograms from all the blocks
are concatenated together as the final feature vector. Considering that
there exists a strong correlation between adjacent patches of an image
and consequently the LBP features are redundant, we use PCA
whitening to make our input features uncorrelated with each other
and have unit variance along each dimension.

3. SERT: synthetic examples based reverse training

3.1. Problem formulation

Denote X={x1, x2, …, xn} as an image set containing n face
examples from a person, where xi is the feature vector of the ith single

image, and is in the form of LBP. A subject can have multiple image
sets. Given k training image sets X1, X2, …, Xk that belong to c classes
(k > =c) and their corresponding labels y={1, 2, …, c}, when a query
image set Xq comes, our task is to find out which class it belongs to.

3.2. Reverse training and the proposed framework

After the preparation for features, we use the Reverse Training
algorithm proposed in [36] to do the classification work.

For better illustration, here we use a toy example. Suppose a
coming query set Xq has 200 images. The 20 training sets that belong
to 20 classes (multiple sets per subject are combined as a whole) are
denoted by D={X1, X2, …, X20}. 10 images per set in D are randomly
selected to form a set D1 containing 200 images and the rest of images
in D form the set D2. As the name “reverse training” suggests, we treat
the 200 images in Xq and images in D1 as training data and the images
in D2 as test data. We train a binary classifier. Specifically, all 200
images in Xq are labeled as +1 while 200 images in D1 are labeled as
−1. A binary classifier Liblinear [41] is trained on these 400 instances.
Since images from all classes are present in D1, the classifier learns to
separate images in Xq from images of other classes. Actually, D1 does
have a small number of images belonging to the same class as Xq.
However, since the number of these images is quite small, the learned
binary classifier treats them as outliers and learns to discriminate the
class of the query image set from all other classes.

Then, images inD2 are tested on the learned binary classifier. Those
images who are classified as +1 (same side as Xq) are denoted as D+

2.
Let yD2

+ denote the class labels of images in D+
2. A normalized

frequency histogram h of class labels inyD2
+ is computed, which has

20 bins in our example. Intuitively, the ith bin of the histogram, hi (i=1,
2, …, 20), represents the percentage of images of class i in D2 which are
classified as +1. Or in other words, hi is given by the ratio of the
number of images of D2 belonging to class i and classified as +1 to the
total number of images of D2 belonging to class i. hi is computed as,

⎧⎨⎩∑ ∑h f y f y f y
y i
y i

= ( )/ ( ), where ( ) =
1, =
0, ≠i y y i y y i i∈ ∈D D2

+ 2 (1)

Finally, the label of the query set Xq can be predicted as the class in
D2 with most of its images classified as +1. Therefore, the class label of
Xq is assigned to,

y h= arg maxq
i

i
(2)

The reason we choose reverse training as our classification method
is straightforward. Reverse Training (RT) has two main advantages: (1)
it does not need offline training and can adapt to newly added training

Table 1
Feature extraction based on block-wise LBPu2

8,1.

Input: A face image
1. Divide the face image into k×k non-overlapping uniformly spaced grid cells;
2. For each pixel in one cell, sample its 8 neighbors with radius 1 and map its pattern

into one of the 59 cases;
3. Build the histogram over each cell, which counts the frequency of each number (1–

59);
4. Normalize the histograms and concatenate them one after another (either column-

wise or row-wise);
Output: A feature vector whose dimension is 59k2

Fig. 3. A synthetic feature and its original feature.
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sets easily; (2) it can greatly reduce the number of binary classifiers and
the number of images used for training. As for the second advantage,
RT trains only one binary classifier; however, traditional multiclass
classification strategies such as one-vs-one and one-vs-all train c(c−1)/
2 and c binary classifiers respectively, which is far more than that of
RT. The flowchart of the proposed SERT approach is presented in
Fig. 4.

4. Experimental results and discussions

4.1. Datasets and settings

In order to demonstrate the superiority of the proposed method
over the other competitors, experiments need to be performed on
benchmark datasets. In the field of image set classification, there exists
several different datasets and they are designed for various application
scenarios. Specifically, the Honda/UCSD dataset [42], the CMU Mobo
dataset [43], and the YouTube Celebrities dataset [38] are used for
testing video-based face classification algorithms while the ETH-80

dataset [44] is commonly used as an object recognition benchmark.
Since our proposed method SERT is designed mainly for classification
of facial images, we conducted experiments on Honda/UCSD, CMU
Mobo, and YouTube Celebrities. Below, we will first give a brief
description of each of these three datasets followed by the adopted
experimental configurations. Then, we will present a performance
comparison of the proposed method with the other competitors.

The Honda/UCSD dataset [42] contains 59 video sequences invol-
ving 20 different persons. The number of frames for each video ranges
from 12 to 645. The face in each frame is first automatically extracted
using Viola and Jones face detection algorithm [45] and then resized to
the size of 20×20. In our experiment, one video is considered as an
image set. Specifically, each person has one image set as the gallery and
the remaining sets as the probes (in other words, 20 sequences for
training and 39 for testing). Histogram equalization is the only
preprocessing procedure we made in all three datasets. k is set as 4
for LBP block division. We repeat our experiment 10 times with
randomly selected training and testing combinations. Some examples
of an image set from the Honda/UCSD dataset are shown in Fig. 5(a).

Fig. 4. Illustration for the computation process of SERT.
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The CMU Mobo (Motion of Body) dataset [43] consists of 96 video
sequences of 24 different subjects walking on a treadmill. Each subject
has 4 sequences corresponding to four different walking patterns: slow
walk, fast walk, incline walk and walking with a ball. The number of
frames for each video is about 300. Similar to the Honda, the faces are
detected using [45] and resized to 40×40. As a convention, we consider
one video as an image set and select one set per person for training and
the rest sets for testing (24 sets for training and 72 for testing). We set
k=5 for LBP block division. We conduct ten-fold experiments by
randomly selected gallery/probe combinations. Fig. 5(b) shows part
of one person's video sequences from the CMU Mobo dataset.

The YouTube Celebrities [38] has 1910 video clips of 47 celebrities.
This dataset is collected from YouTube and the videos are acquired
under real-life scenarios. Consequently, the faces in this dataset exhibit
a wide range of diversity and appearance variations in the form of
changing illumination conditions, different head poses, and expression
variations. The algorithm in [45] fails to detect the correct face in many
frames due to its poor resolution and large pose and expression
variations. We utilize the method in [46] to track the face region across
the entire video, in which the face bounding boxes in initial frame is
manually marked and provided along with the dataset. The cropped
face region is then resized to 30×30. k=4 for LBP grid division. As a
baseline performance measure, we treat the frames in each video as an
image set and conduct the five-fold cross validation experiments
similar to [15,23,28,36]. Specifically, we divided the whole dataset
into five equal folds with minimal overlapping. From the aspect of fold
division, for subjects who have more than 45 videos, we randomly
select 45 from them. As for subjects who don’t have 45 videos, some
videos are selected more than once. Then we divide 45 videos per
person into 5 fold. Each fold covers all 47 persons and each person has
9 image sets in one fold. 3 image sets per person are randomly selected
for training and the remaining 6 are used for testing (141 sets for
training and 282 sets for testing). Fig. 5(c) shows some examples from
one video clip.

4.2. Comparisons with existing methods

We compared our proposed framework with several recently
proposed state-of-the-art methods which included Discriminant
Canonical Correlation analysis (DCC) [18], Manifold-to-Manifold
Distance (MMD) [23], Manifold Discriminant Analysis (MDA) [28],

Affine Hull based Image Set Distance (AHISD) [14], Convex Hull based
Image Set Distance (CHISD) [14], Sparse Approximated Nearest Point
(SANP) [15], Covariance Discriminative Learning (CDL) [31] and
Reverse Training (RT) [36]. We used the implementations provided
by the respective authors for all these methods. Table 2 tabulates the
recognition results for our approach and all the other methods listed
above on the three datasets. In Table 2, the numbers in each field
indicate the average classification accuracy and the standard deviation
obtained in multifold cross-validation experiments. The experimental
results clearly demonstrate that the proposed approach performs
consistently better than the other state-of-the-art methods. Actually,
the proposed method SERT is an extension of RT. Compared with RT,
the novelty of SERT mainly lies in that unseen facial examples are
synthesized to enrich the variety of the image set. The classification
accuracy of SERT is higher than RT, especially on CMU Mobo and
Youtube datasets, indicating that the proposed sample synthesizing
strategy is quite effective to deal with the image set based face
classification problem.

In order to compare the computational complexity of different
methods, the time cost consumed for one classification operation by
each method was also evaluated. CMU Mobo was used for this
experiment. Results were obtained on a workstation with an Intel i7-
5960X CPU and 64 G RAM. The software platform was Matlab2015a.
Results are summarized in Table 3. From Table 3 it can be seen that
with respect to the running speed, RT [36] runs the fastest while the
proposed method SERT can rank the second. Both RT and SERT can
run much faster than the other competitors.

Fig. 5. Examples of (a) Honda/UCSD, (b) CMU Mobo, and (c) YouTube Celebrities datasets.

Table 2
Average recognition rates (%) with standard deviation of different methods on the three
benchmark datasets.

Method Honda/UCSD CMU Mobo YouTube

DCC [18] 92.6 ± 2.3 88.9 ± 2.5 64.8 ± 2.1
MMD [23] 92.1 ± 2.3 92.5 ± 2.9 62.9 ± 1.8
MDA [28] 94.4 ± 3.4 90.3 ± 2.6 66.5 ± 1.1
AHISD [14] 91.3 ± 1.8 88.5 ± 3.3 64.4 ± 2.4
CHISD [14] 93.6 ± 1.6 95.7 ± 1.0 63.4 ± 2.9
SANP [15] 95.1 ± 3.1 95.6 ± 0.9 65.6 ± 2.4
CDL [31] 98.9 ± 1.3 88.7 ± 2.2 68.5 ± 3.3
RT [36] 100 ± 0.0 97.3 ± 0.6 76.9 ± 2.0
SERT 100±0.0 98.2 ± 1.1 80.5 ± 2.4
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5. Conclusions

One challenging problem in image set based classification is that
the poses or the viewpoints of the query set are not covered by the
corresponding training image set. To solve this issue, in this paper, we
proposed to synthesize multiple virtual instances so as to enrich the
variety of the dataset. With this simple technique, the recognition rate
of image set based face recognition can be enhanced. With respect to
the classification scheme, we resort to reverse training. The proposed
approach is named as Synthetic Examples based Reverse Training,
SERT for short. SERT was evaluated on three benchmark image set
datasets designed for video-based face recognition applications and the
experimental results indicate that it can yield better performance than
the other competitors.
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