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Biometric based personal authentication is an effective method for automatically recognizing, with a

high confidence, a person’s identity. By observing that the texture pattern produced by bending the

finger knuckle is highly distinctive, in this paper we present a new biometric authentication system

using finger-knuckle-print (FKP) imaging. A specific data acquisition device is constructed to capture

the FKP images, and then an efficient FKP recognition algorithm is presented to process the acquired

data in real time. The local convex direction map of the FKP image is extracted based on which a local

coordinate system is established to align the images and a region of interest is cropped for feature

extraction. For matching two FKPs, a feature extraction scheme, which combines orientation and

magnitude information extracted by Gabor filtering is proposed. An FKP database, which consists of

7920 images from 660 different fingers, is established to verify the efficacy of the proposed system and

promising results are obtained. Compared with the other existing finger-back surface based biometric

systems, the proposed FKP system achieves much higher recognition rate and it works in real time.

It provides a practical solution to finger-back surface based biometric systems and has great potentials

for commercial applications.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Personal authentication is a common concern to both
industries and academia due to its numerous applications such
as physical access control, computer security, banking and law
enforcement, etc. Biometrics, which refers to the unique physio-
logical or behavioral characteristics of human beings, can be used
to distinguish between individuals and hence can serve as an
ideal solution to this problem. With the rapid development of
computer techniques, in the past three decades researchers have
exhaustively investigated the use of a number of biometric
characteristics, including fingerprint [1–3], face [4,5], iris [6,7],
retina [8,9], palmprint [10–16], hand geometry [17–19], hand
vein [20,21], finger surface [22–27], inner knuckle print [28,29],
voice [30], ear [31], gait [32], signature [33,34], etc. Although
many biometric techniques are still under the stage of research
and development, some biometric systems have been used in a
large scale; for example, the Hong Kong government has been
using the fingerprint recognition system as the automated
passenger clearance system (e-channel) since 2004 [35].

Among various kinds of biometric identifiers, hand-based
biometrics has been attracting considerable attention over recent
years. Fingerprint [1–3], palmprint [10–16], hand geometry
ll rights reserved.
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[17–19], hand vein [20,21], and inner knuckle print [28,29] have
been proposed and well investigated in the literature. The
popularity of hand-based biometrics should be attributed to its
high user acceptance. In fact, the image pattern in the finger
knuckle surface is highly unique and thus can serve as a
distinctive biometric identifier. Woodard and Flynn [22,23] are
among the first scholars who exploit the use of finger knuckle
surface in biometric systems. They set up a 3D finger back surface
database with the Minolta 900/910 sensor. For feature extraction,
they used the curvature based shape index to represent the finger
back surface. Woodard’s work makes a good effort to validate the
uniqueness of outer finger surface as a biometric characteristic.
However, their work did not provide a practical solution in
establishing an efficient system using the outer finger surface
features. The cost, size and weight of the Minolta 900/910 sensor
limit the use of it in a practical biometric system, and the time-
consuming 3D data acquisition and processing limit its use in
real-time applications. In addition, they did not fully exploit the
finger knuckle texture information in feature extraction.

Later, Kumar and Ravikanth [24,25] proposed another ap-
proach to personal authentication using 2D finger-back surface
imaging. They developed a system to capture hand-back images
and then extracted the finger knuckle areas by some preproces-
sing steps. The subspace analysis methods such as PCA, LDA and
ICA were combined to do feature extraction and matching. With
Kumar’s design, the acquisition device is doomed to have a large
size because nearly the whole hand-back area has to be captured,
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despite the fact that the finger knuckle area only occupies a small
portion of the acquired image. Furthermore, subspace analysis
methods may be effective for face recognition but they may not be
able to effectively extract the distinctive line and junction
features from the finger knuckle surface. In Kumar’s later work
[26,27], they used the robust line orientation code proposed in
[16] to extract the orientation of the finger-back surface images.

In this paper, a new hand-based biometric technique, namely
finger-knuckle-print (FKP), is developed for online personal
authentication. FKP refers to the image pattern of the outer
surface around the phalangeal joint of one’s finger, which is
formed by bending slightly the finger knuckle. A specially
designed acquisition device is constructed to collect FKP images.
Unlike the systems in [22] and [25], which first capture the image
of the whole hand and then extract the finger or finger knuckle
surface areas, the proposed system captures the image around the
finger knuckle area of a finger directly, which largely simplifies
the following preprocessing steps. Meanwhile, with such a design
the size of the imaging system can be greatly reduced, which
improves much its applicability. Since the finger knuckle will be
slightly bent when being imaged in the proposed system, the
inherent finger-knuckle-print patterns can be clearly captured
and hence the unique features of FKP can be better exploited.

After an FKP image is captured, a region of interest (ROI) needs
to be cropped from the original image for the following feature
extraction. An efficient FKP ROI extraction algorithm is proposed
based on the intrinsic characteristics of FKP images. For matching
two FKP ROI images, we propose a new feature extraction scheme,
which combines orientation and magnitude information ex-
tracted by Gabor filters. Experimental results show that it
outperforms the other state-of-the-arts coding-based feature
extraction methods, such as the CompCode [12], the OrdinalCode
[14], the RLOC [16,26,27] and the BOCV [10], in FKP recognition.
To evaluate the performance of the proposed technique, an FKP
database was established using our prototype system, which
consists of 7,920 images from 660 different fingers. Experimental
results demonstrated that the proposed FKP-based authentication
system can verify the personal identity in real time with a high
recognition rate. Compared with the other existing finger knuckle
surface based biometric systems [22–25], the proposed one
performs much better in terms of both the recognition accuracy
and the speed.

The rest of this paper is organized as follows. Section 2
introduces the design and structure of the FKP image acquisition
device. Section 3 describes the FKP image preprocessing and the
ROI extraction method. Section 4 investigates the FKP feature
extraction method and the related matching scheme. Section 5
Fra
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Fig. 1. Structure of the proposed FKP-based personal authentication system. The whole
reports the experimental results. Finally, conclusions are pre-
sented in Section 6.
2. The finger-knuckle-print (FKP) recognition system

The schematic diagram of our FKP-based personal authentica-
tion system is shown in Fig. 1. The system is composed of a data
acquisition module and a data processing module. The data
acquisition module is composed of a finger bracket, a ring LED
light source, a lens, a CCD camera and a frame grabber. The
captured FKP image is inputted to the data processing module,
which comprises three basic steps: region of interest (ROI)
extraction, feature extraction and coding, and matching. Fig. 2
shows the outlook of our FKP image acquisition device whose
overall size is 160 mm�125 mm�100 mm.

A critical issue in data acquisition is to make the data
collection environment as stable and consistent as possible so
that variations among images collected from the same finger can
be reduced to the minimum. In general, a stable image acquisition
process can effectively reduce the complexity of the data
processing algorithms and improve the image recognition
accuracy. Meanwhile, we want to put as little constraint as
possible on the users for high user friendliness of the system.
With the above considerations, a semi-closed data collection
environment is designed in our system. The LED light source and
the CCD camera are enclosed in a box so that the illumination is
nearly constant. One difficult problem is how to make the gesture
of the finger nearly constant so that the captured FKP images from
the same finger are consistent. In our system, the finger bracket is
designed for this purpose.

Referring Fig. 1, a basal block and a triangular block are used to
fix the position of the finger joint. In data acquisition, the user can
easily put his/her finger on the basal block with the middle
phalanx and the proximal phalanx touching the two slopes of the
triangular block. Such a design aims at reducing the spatial
position variations of the finger in different capturing sessions.
The triangular block is also used to constrain the angle between
the proximal phalanx and the middle phalanx to a certain
magnitude so that line features of the finger knuckle surface can
be clearly imaged.

After the image is captured, it is sent to the data processing
module for preprocessing, feature extraction and matching (refer
to Sections 3 and 4 for details). The size of the acquired FKP
images is 768�576 under a resolution of 400 dpi. Fig. 3 shows
four sample images acquired by the developed device. Two
images in the first row are from one finger and images in the
CCD
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system is composed of a data acquisition module and a data processing module.
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Fig. 2. (a) The outlook of the developed FKP image acquisition device and (b) the device is being used to collect FKP samples.

Fig. 3. Sample FKP images acquired by the developed system. (a) and (b) are from one finger while (c) and (d) are from another finger. Images from the same finger are

taken at two different sessions with an interval of 56 days.
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second row are from another finger. Examples of images for the
same finger were captured at two different collection sessions
with an interval of 56 days. We can see that by using the
developed system, images from the same finger but collected at
different times are very similar to each other. Meanwhile, images
from different fingers are very different, which implies that FKP
has the potential for personal identification.
3. Region of interest (ROI) extraction

FKP images collected from different fingers are very different.
On the other hand, for the same finger, images collected at
different collection sessions will also vary because of the variation
in spatial locations of the finger. Therefore, it is necessary and
critical to align FKP images by adaptively constructing a local
coordinate system for each image. With such a coordinate system,
an ROI can be cropped from the original image for reliable feature
extraction and matching. In this section, we will propose an
algorithm for the local coordinate system determination and ROI
sub-image extraction.

Because the finger is always put flatly on the basal block when
the FKP image is captured, the bottom boundary of the finger is
stable in every images and can be taken as the X-axis of the ROI
coordinate system. However, the Y-axis is much more difficult to
determine. Intuitively, we want to locate the Y-axis in the center
of the phalangeal joint so that most of the useful features in the
FKP image can be preserved within the ROI. It can be observed
that line features on the two sides of the phalangeal joint have
different convex directions. Taking this fact as a hint, we propose
to code line pixels based on their convex directions and then
make use of the convex direction codes to determine the Y-axis.
Fig. 4 illustrates the main steps of the coordinate system
determination and the ROI extraction. In the following, we
describe these steps in detail.

Step 1: image down-sampling

The size of the captured FKP image is 768�576 under a
resolution of 400 dpi. Based on our experiments, it is not neces-
sary to use such a high resolution for feature extraction and
matching. Therefore, we apply a Gaussian smoothing operation to
the original image, and then down-sample the smoothed image to
about 150 dpi (see Section 5.2 for the discussion of resolution
selection). The down-sampling operation has two advantages.
First it can significantly reduce the computational cost by
reducing the data amount. Second, the Gaussian smoothing will
suppress the noise in the original image, which can benefit the
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Fig. 4. Illustration for the ROI extraction process. (a) ID image which is obtained by a down-sampling operation after a Gaussian smoothing; (b) X-axis of the coordinate

system, which is the line Y=Y0, fitted from the bottom boundary of the finger; (c) IS image extracted from ID; (d) IE image obtained by applying a Canny edge detector on IS;

(e) ICD image obtained by applying the convex direction coding scheme to IE; (f) plot of conMagðxÞ for a typical FKP image; (g) line X=x0
0 , where x00 ¼ arg

x
min

�
conMagðxÞ

�
;

and (h) ROI coordinate system, where the rectangle indicates the area of the ROI sub-image that will be extracted.
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following feature extraction and matching steps. We denote
by ID the down-sampled image and Fig. 4a shows such an
image.

Step 2: determine the X-axis of the coordinate system

Refer to Fig. 4b, the bottom boundary of the finger can be easily
extracted by a Canny edge detector. Actually, this bottom
boundary is nearly consistent to all FKP images because all the
fingers are put flatly on the basal block in data acquisition. By
fitting this boundary as a straight line, the X-axis of the local
coordinate system is determined.

Step 3: crop a sub-image IS from ID

Useful information, which can be used for personal identifica-
tion only resides in a portion of the whole FKP image. Therefore,
we first crop a sub-image IS from the original image for the
convenience of later processing. The left and the right boundaries
of IS are two fixed values evaluated empirically. The top and the
bottom boundaries are estimated according to the boundary of
real fingers. Fig. 4c shows an example of IS image. This roughly
cropped sub-image will be used in calculating the Y-axis so that
an accurate ROI image can be cropped.

Step 4: Canny edge detection

By applying Canny edge detector to IS, the corresponding edge
map IE can be obtained. See Fig. 4d for an example.

Step 5: convex direction coding for IE

Based on the local convexity characteristics of the edge map IE,
we can code IE to get the convex direction coding map ICD. At this
step, each pixel on IE will be given a code to represent the local
convex direction of this pixel. The underlying principle of this
coding scheme is as follows. Based on the observation of FKP
images, we abstract an ideal model for ‘‘curves’’ on an FKP image
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Fig. 5. (a) Ideal model for FKP ‘‘curves’’ and (b) convex direction coding scheme.

Table 1
Algorithm convex_direction_coding (IE).

Input: IE (m�n binary edge map computed in step 4)

Output: ICD (m�n convex direction code map)

Begin module

ymid ¼
height of IE

2 ;

for each IE(i,j) do
if IE(i,j)=0 // it is a background pixel

ICD(i,j)=0;

else if IEðiþ1; j�1Þ ¼ 1 and IEðiþ1; jþ1Þ ¼ 1 // it is a bifurcation pixel

ICD(i,j)=0;

else if ðIEðiþ1; j�1Þ ¼ 1 and io ¼ ymidÞ or ðIEðiþ1; jþ1Þ ¼ 1 and i4ymidÞ

ICD(i,j)=1;

else if ðIEðiþ1; jþ1Þ ¼ 1 and io ¼ ymidÞ or ðIEðiþ1; j�1Þ ¼ 1 and i4ymidÞ

ICD(i,j)=�1;

end if
end for
End module
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as shown in Fig. 5a. In this model, an FKP ‘‘curve’’ is either convex
leftward or convex rightward. We code the pixels on convex
leftward curves as ‘‘1’’, the pixels on convex rightward curves as
‘‘�1’’, and the other pixels not on any curves as ‘‘0’’. Fig. 5b
illustrates the coding scheme. In our system, we regard the edges
obtained in step 4 as ‘‘curves’’ and this convex direction coding is
performed on IE. The pseudo-code of this algorithm is given in
Table 1.

After convex direction coding, each ICD point is assigned with a
value 0, 1 or �1. Fig. 4e shows an ICD map in false color image
format. White pixels on it are the ones with convexity value ‘‘1’’;
black pixels are the ones with value ‘‘�1’’; and gray pixels are of
value ‘‘0’’.

Step 6: determine the Y-axis of the coordinate system

Consider the ideal FKP curve model set up at step 5. For an FKP
image, ‘‘curves’’ on the left part of the phalangeal joint are mostly
convex leftward and those on the right part are mostly convex
rightward. Meanwhile, ‘‘curves’’ in a small area around the
phalangeal joint do not have obvious convex directions. Based
on this observation, at a horizontal position x (x represents the
column) of an FKP image, we define the ‘‘convexity magnitude’’ as

con MagðxÞ ¼ abs
X
W

ICD

 !
ð1Þ

where W is a window that is symmetrical about the axis X=x and
W is of size d�h with h being the height of IS. d is experimentally
chosen as 35 in this paper. The ‘‘convexity magnitude’’ is
proposed to measure how strong the dominant convex direction
is in a local area on the FKP image. The characteristic of the FKP
image suggests that con MagðxÞ will reach a minimum around the
center of the phalangeal joint and this position can be used to set
the Y-axis of the coordinate system. Let

x00 ¼ arg
x

min
�

conMagðxÞ
�

ð2Þ

Then X=x00 can be set as the Y-axis. Fig. 4f plots the curve
conMag(x) of an FKP image and Fig. 4g shows the vertical line
X=x00, which is the Y-axis of the ROI system.

Step 7: crop the ROI image

Now that we have fixed the X- and Y-axes, the local coordinate
system can then be determined. Refer to Fig. 4h, with the
constructed coordinate system, the ROI sub-image IROI can be
extracted from ID with a fixed size, which is empirically set as
160�80 in our system.

Fig. 6 shows some examples of the extracted ROI images. We
can see that the proposed coordinate system construction and the
ROI extraction method can effectively align different FKP images
and normalize the area for feature extraction. Such operations
reduce greatly the variations caused by various poses of the finger
in data collection.
4. FKP feature extraction and matching

The Gabor filtering technique can simultaneously extract the
spatial-frequency information from the original signal [36]. Since
1980s, it has been widely used as an effective tool to fulfill the
feature extraction job in face, iris, fingerprint and palmprint
systems. In [37], Loris and Alessandra described a Gabor feature
selection technique. The Gabor filter can produce three types of
features—magnitude, phase, and orientation, which can be used
separately or jointly in different systems [38]. In this paper, we
propose a method combining the orientation and the magnitude
features for FKP recognition. Experimental results in Section 5
verify that the proposed scheme performs better in FKP recogni-
tion than the other coding-based methods, such as BOCV [10],
CompCode [12], OrdinalCode [14] and RLOC [16,26,27].

The Gabor function has several slightly different forms in the
literature and here we adopt the one proposed by Lee [39]

Gðx; y;o; yÞ ¼ offiffiffiffiffiffi
2p
p

k
e�ðo

2=8k2Þð4x02þy02Þ
�

eiox0�e�ðk
2=2Þ
�

ð3Þ

where x0=(x�x0)cosy+(y�y0)siny and y0=�(x�x0)siny+(y�y0)
cosy, (x0, y0)is the center of the function, o is the radial frequency
in radians per unit length and y is the orientation of the Gabor
functions in radians. k is defined by k¼

ffiffiffiffiffiffiffiffiffiffiffi
2ln 2
p

ð2d
þ1=2d

�1Þ, where
d is the half-amplitude bandwidth of the frequency response. o can
be determined by o=k/s, where s is the standard deviation of
the Gaussian envelop.

Using Gabor filtering, next we propose an improved compe-
titive coding (ImCompCode) method to exploit the orientation
information, and then we propose a magnitude coding (MagCode)
method to exploit the magnitude information. Finally, we fuse
these two kinds of features in FKP matching.
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Fig. 6. Sample ROI images extracted by the proposed method. These four images are ROI images for the sample images shown in Fig. 3.

Fig. 7. (a)–(d) and (e)–(h) are ImCompCode maps and MagCode maps for the FKP ROI images shown in Fig. 6, respectively.
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4.1. Improved competitive coding (ImCompCode) for orientation

feature extraction

At each pixel IROI(x,y), we extract the orientation information
and represent it as an ‘‘orientation code’’. This process is similar to
the CompCode scheme in [12].

With a bank of Gabor filters, the orientation feature at each
pixel IROI(x,y) can be extracted. In our system, we only use the real
part of the Gabor filter to perform this job. Mathematically, this
orientation coding process can be represented as

oriCodeðx; yÞ ¼ arg
j

minfIROIðx; yÞ
�GRðx; y; yjÞg ð4Þ

where symbol * represents the convolution operation, GR

represents the real part of the Gabor function G, yj= jp/J, j={0,y,
J�1}, and J represent the number of different orientations.

Here we improve the original CompCode scheme. Often on an
FKP image, there are some pixels lying on relatively ‘‘plane’’ areas,
i.e. these pixels do not reside on any lines and consequently do
not have a dominate orientation. Accordingly, the J Gabor filter
responses at such pixels do not have much variation. If we still
assign an orientation code to it, this code may not be stable and
will be sensitive to noise, decreasing the performance of feature
representation and matching. Therefore, those ‘‘plane’’ pixels
should be removed from orientation coding. We define the
‘‘orientation magnitude’’ at a pixel as

oriMagðx; yÞ ¼
abs
�

maxðRÞ�minðRÞ
�

max
�

abs
�

maxðRÞ
�
; abs

�
minðRÞ

�� ð5Þ

where R={Rj= IROI(x, y)*GR(x, y, yj)} and j={0,y, J�1} are the Gabor
filtering responses at this pixel. The ‘‘orientation magnitude’’
oriMag(x, y) can measure how likely the pixel (x, y) has a
dominant orientation. If it is smaller than a threshold, we reckon
that this pixel has no dominant orientation and the corresponding
competitive code is assigned as J.

Based on our experimental results, using 6 Gabor filters of
different orientations are enough. This is in accordance with the
conclusion made by Lee [39] that the simple neural cells are
sensitive to specific orientations with approximate bandwidths of
p/6. Thus, we choose 6 orientations, yj= jp/6 and j={0,y, 5} for the
competition. The pseudo-code for our ImCompCode scheme is
summarized in Table 2 and Fig. 7(a)–(d) are ImCompCode maps
for FKP ROI images shown in Fig. 6.
4.2. Magnitude coding (MagCode) for magnitude feature extraction

Besides orientation information, we also want to exploit
magnitude information from Gabor filter responses. The magnitude
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Table 2
Algorithm ImCompCode (IROI).

Input: IROI (m�n ROI sub-image)

Output: ImCompCode (m�n integer matrix)

Begin module
for each IROIðx; yÞ do

R¼ fRj ¼ IROIðx; yÞ � GRðx; y; yjÞg, where yj ¼ jp=6; j¼ f0;1; :::5g;

oriMag ¼
abs

�
maxðRÞ�minðRÞ

�
maxðabsðmaxðRÞÞ;absðminðRÞÞÞ;

if oriMagoT // this pixel does not have a dominant orientation

ImCompCodeðx; yÞ ¼ 6;

else

ImCompCodeðx; yÞ ¼ arg
j

minfRjg;
end if

end for
End module
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of the Gabor filter response at IROI(x, y) isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
IROIðx; yÞ

�GRðx; y;o; yjÞ

�2
þ

�
IROIðx; yÞ

�GIðx; y;o; yjÞ

�2
r

ð6Þ

where GR and GI represent the real part and the imaginary
part of the Gabor function G respectively. However, in order to
reduce the computational cost, when generating the magnitude
code map, we want to make use of the temporary results generated
from the ‘‘orientation coding’’ process. Thus, we still use the real
part of the Gabor filter and define the magnitude at IROI(x, y) as

magðx; yÞ ¼max
j

�
abs
�

IROIðx; yÞ
�GRðx; y; yjÞ

��
ð7Þ

Then a localized quantization is applied to mag(x, y) to get the
magnitude code. This process can be expressed as

magCodeðx; yÞ ¼ ceil
�

magðx; yÞ�lmin
� lmax�lmin

N

� �!, 
ð8Þ

where N is the number of quantization levels, l min¼

min
ðx;yÞAWm

�
magðx; yÞ

�
, and l max¼ max

ðx;yÞAWm

�
magðx; yÞ

�
. Wm is a

w�w window centered at (x, y). The resulting magnitude code
is an integer within 1�N. w and N can be tuned by experiments
on a sub-dataset and they are experimentally set as 31 and 8 in
this paper, respectively. Fig. 7(e)–(h) show the magnitude code
maps for FKP ROI images presented in Fig. 6.
4.3. FKP matching

Suppose we are comparing two FKP ROI images, P and Q. Let Po

and Qo be the two orientation code maps; and let Pm and Qm be
the two magnitude code maps. At first, we will calculate the
matching distance between Po and Qo and the matching distance
between Pm and Qm, respectively, and then fuse the two matching
distances together as the final matching distance between
P and Q.

When calculating the matching distance between Po and Qo,
we adopt the angular distance proposed in [12], which is defined
as

angDðP;Q Þ ¼

PRows
y ¼ 1

PCols
x ¼ 1 G

�
Poðx; yÞ;Qoðx; yÞ

�
ðJ=2ÞS

ð9Þ
where S is the area of the code map, and

G
�

Poðx; yÞ;Qoðx; yÞ
�
¼

1; Poðx; yÞ ¼ 6 and Qoðx; yÞa6

1; Poðx; yÞa6 and Qoðx; yÞ ¼ 6

0;Poðx; yÞ ¼Qoðx; yÞ

min
�

Poðx; yÞ�Qoðx; yÞ;Qoðx; yÞ�
�

Poðx; yÞ�6
��
;

if Poðx; yÞ4Qoðx; yÞ and Poðx; yÞa6

min
�

Qoðx; yÞ�Poðx; yÞ; Poðx; yÞ�
�

Qoðx; yÞ�6
��
;

if Poðx; yÞoQoðx; yÞ and Qoðx; yÞa6

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð10Þ

The matching distance between Pm and Qm is defined as

magDðP;Q Þ ¼

PRows
y ¼ 1

PCols
x ¼ 1 abs

�
Pmðx; yÞ�Qmðx; yÞ

�
ðN�1ÞS

ð11Þ

Then, the final matching distance between P and Q can be
fused from angD and magD as

distðP;Q Þ ¼ ð1�lÞangDðP;Q ÞþlmagDðP;Q Þ ð12Þ

where l is used to control the contribution of magD to dist and it is
experimentally set as 0.15 in our system.

Taking into account the possible translations in the extracted
ROI sub-image (with respect to the one extracted in the
enrolment), multiple matches are performed by translating one
set of features in horizontal and vertical directions. And in such
case, S is the area of the overlapping parts of the two code maps.
The minimum of the resulting matching distances is considered to
be the final distance. The ranges of the horizontal and the vertical
translations are empirically set as �8 to 8 and �4 to 4 in this
paper, respectively.
5. Experimental results

5.1. Database establishment

In order to evaluate the proposed FKP-based personal
authentication system, a database was established using the
developed FKP image acquisition device (refer to Figs. 1 and 2).
FKP images were collected from 165 volunteers, including 125
males and 40 females. Among them, 143 subjects were 20–30
years old and the others were 30–50 years old. The database will
be available in the website of Biometrics Research Center, The
Hong Kong Polytechnic University (http://www.comp.polyu.edu.
hk/�biometrics/FKP.htm).

We collected samples in two separate sessions. In each session,
the subject was asked to provide 6 images for each of the left
index finger, the left middle finger, the right index finger and the
right middle finger. Therefore, 48 images from 4 fingers were
collected from each subject. In total, the database contains
7920 images from 660 different fingers. The average time interval
between the first and the second sessions was about 25 days. The
maximum and minimum time intervals were 96 days and
14 days, respectively. In all of the following experiments, we
took images collected at the first session as the gallery set and
images collected at the second session as the probe set. To obtain
statistical results, each test image in the probe set was matched
with all the training images in the gallery set. If the test and the
training images were from the same finger, the matching between
them was counted as a genuine matching; otherwise it was
counted as an imposter matching.

5.2. Selection of the image resolution

The resolution of original FKP images acquired in our system is
about 400 dpi, which may not be optimal in terms of the accuracy
and efficiency of FKP verification. In fact, many factors, such as the

http://www.comp.polyu.edu.hk/~biometrics/
http://www.comp.polyu.edu.hk/~biometrics/
http://www.comp.polyu.edu.hk/~biometrics/
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storage space, the computational cost, the employed feature
extraction and matching method, and the recognition accuracy,
should be considered in selecting a suitable resolution of the FKP
images for a more efficient biometric system. To this end, we
conducted a series of experiments to select the ‘‘optimal’’
resolution and set the selection criterion as: the minimum
resolution with which a satisfying verification performance
could be obtained. The experiments were performed on a
sub-dataset of the whole FKP database. In this sub-dataset, there
were 120 classes, including 1440 images. With respect to the
feature extraction method, the CompCode was used [12].
We smoothed the original images by using a Gaussian kernel
and then down-sampled the images to five lower resolutions:
200, 170, 150, 120 and 100 dpi. The experimental results are
summarized in Table 3.

Based on the results listed in Table 3, it can be seen that
150 dpi is a good choice. It leads to the lowest EER, while the
resolution is much smaller than the original one (400 dpi). This
will reduce the computational cost and speed up the feature
extraction and matching processes significantly. Therefore, in all
of the following experiments, we used the FKP images with a
resolution of 150 dpi.
5.3. FKP verification

Verification aims to answer the question of ‘‘whether the
person is the one he/she claims to be’’. In order to show and
explain the performance of the proposed system clearly, 3
experiments were conducted. In each experiment, we evaluated
and compared the performance of five coding-based feature
extraction methods: CompCode [12], OrdinalCode [14], RLOC [16],
BOCV [10] and the proposed ImCompCode&MagCode. The
CompCode has been introduced in Section 4.1. In OrdinalCode,
Table 3
EERs obtained under different resolutions.

Resolution (dpi) EER (%)

200 1.73

170 1.41

150 1.36

120 1.71

100 1.92
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Fig. 8. (a) ROC curves obtained by five recognition methods in experiment 1 and (b

proposed scheme in experiment 1.
differences between Gaussians from two orthogonal directions
were used to extract the orientation fields. The scales of the 2D
Gaussian function along two orthogonal directions in OrdinalCode
were set as 1.2 and 4.2 in our implementation. The RLOC method
is based on the modified finite Radon transform. It was originally
proposed for palmprint recognition [16], and was later adopted
for feature extraction of the finger-back-surface images [26,27]. In
our implementation of RLOC, the ‘‘line width’’ was set as 2 and the
kernel size was 14�14. BOCV [10] is a recently proposed method
for palmprint recognition, which tends to represent multiple
orientations for a local region. The threshold for the binarization
used in BOCV was set as 0 in this paper. Gabor filters used in
CompCode, BOCV and the proposed ImCompCode&MagCode
were all of the form (3), and the parameters were set as: d=3.3
and s=4.
5.3.1. Experiment 1

In the first experiment, all classes of FKPs were involved. Each
image in the probe set was matched against all the images in the
gallery set. Therefore, in this experiment there were 660 (165�4)
classes and 3960 (660�6) images in the gallery set and the probe
set each. The numbers of genuine matchings and imposter
matchings are 23,760 and 7,828,920, respectively. By adjusting the
matching threshold, a receiver operating characteristic (ROC) curve,
which is a plot of genuine accept rate (GAR) against false accept rate
(FAR) for all possible thresholds, can be created. The ROC curve can
reflect the overall performance of a biometric system. Fig. 8a shows
ROC curves generated by five different FKP recognition schemes and
Table 4 lists the corresponding EERs, from which we can see that the
proposed ImCompCode&MagCode scheme performs the best among
the five methods evaluated in terms of EER. Distance distributions
of genuine matchings and imposter matchings obtained by the
proposed scheme are plotted in Fig. 8b.
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Table 4
EERs obtained by different methods in experiment 1.

Method EER (%)

CompCode 1.72

OrdinalCode 3.83

RLOC 1.93

BOCV 1.82

ImCompCode&MagCode 1.48
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Fig. 9. ROC curves for FKPs from (a) left index fingers, (b) left middle fingers, (c) right index fingers and (d) right middle fingers.

Table 5
EERs (%) by different schemes in experiment 2.

Finger type CompCode OrdinalCode RLOC BOCV ImCompCode&Magcode

Left index 2.06 2.69 2.20 2.45 1.73

Left middle 1.96 4.07 2.27 2.42 1.78

Right index 1.82 3.66 2.07 2.43 1.44

Right middle 1.87 4.15 2.32 2.30 1.64
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5.3.2. Experiment 2

As mentioned in Section 5.1, our database contains FKPs from
four types of fingers, left index fingers, left middle fingers, right
index fingers and right middle fingers. The aim of this experiment
is to evaluate the performance of the proposed FKP-based
personal authentication system on each type of fingers separately.
For each type of FKPs, the gallery and the probe each contains 165
classes and 990 (165�6) sample images, and the numbers of
genuine and imposter matchings are 5940 and 487,080, respec-
tively. Similarly, five FKP recognition schemes were evaluated.
ROC curves for different finger types and by different recognition
schemes are shown in Fig. 9. Experimental results in terms of EER
are summarized in Table 5 for comparison.

The experimental results indicate that in general the right
middle and index fingers perform better than their left counter-
parts in terms of EER. This is probably because the majority of
people who provided FKP samples in our database are right-
handed. They would feel more convenience to use our image
acquisition device with their right hand than with the left one,
which consequently leads to a result that the variations in
finger poses of right hand fingers are less severe than left hand
fingers. Remarkable variations in finger poses would cause
severe affine transforms and deformations between two FKP
images of the same finger, which lead to more challenge to FKP
recognition.
5.3.3. Experiment 3

The goal of this experiment is to investigate the system’s
performance when we fuse information from 2 or more fingers of
a person. In fact, in such a case the system works as a kind of
multi-modal system with a single biometric trait but multiple
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Table 6
EERs (%) obtained in experiment 3.

Fingers in fusion CompCode OrdinalCode RLOC BOCV ImCompCode &MagCode

S-rule M-rule S-rule M-rule S-rule M-rule S-rule M-rule S-rule M-rule

Left index 0.33 0.67 0.64 0.72 0.26 0.68 0.41 0.45 0.20 0.63

Left middle

Right index 0.32 0.39 0.71 0.79 0.34 0.37 0.36 0.47 0.26 0.36

Right middle

Left index 0.36 0.67 0.84 0.76 0.42 0.91 0.63 0.63 0.26 0.64

Right index

Left middle 0.29 0.33 0.90 0.87 0.33 0.30 0.43 0.42 0.27 0.30

Right middle

All the four 0 0.03 0.02 0.05 0 0.16 0.01 0.09 0 0.02

Table 7
Computation time for key processes in our system.

Operations Time (msec)

ROI extraction 198

Feature extraction 105

Matching 1.6
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units [40]. Suppose that we want to fuse information from
the right index FKP and the right middle FKP. Each template in the
enrolment database will be composed by a right index FKP tri and
a right middle FKP trm. When matching, a client’s right index FKP
cri and right middle FKP crm will be matched to tri and trm,
respectively to get two matching distances, dri and drm. Then dri

and drm will be fused according to some fusion rules to obtain the
final matching distance, by which the client’s identity can be
identified.

With respect to fusion rules, in this paper we simply examined
the SUM rule and the MIN rule as they are easy to be implemented
and can well reflect the system’s performance. The SUM rule is
defined as

dsum ¼
X

di ð13Þ

and the MIN rule is defined as

dmin ¼minðdiÞ ð14Þ

where di is the matching distance of the client’s ith finger.
We tested several different fusion schemes of fingers with two

fusion rules. Results are presented in Table 6, from which it can be
easily observed that by integrating information from more fingers
the recognition performance of the system could be largely
improved. We can also find that the SUM rule works better than
the MIN rule in our system.
5.4. Speed

The FKP recognition software is implemented using the Visual
C#.Net 2005 on a Dell Inspiron 530 s PC embedded Intel E6550
processor and 2 GB of RAM. Computation times for key operations
in our system are listed in Table 7. The execution time for data
preprocessing and ROI extraction is 198 ms. The time for
ImCompCode&MagCode-based feature extraction and matching
are 105 and 1.6 ms, respectively. Thus, the total execution time for
one verification operation is less than 0.5 s in our prototype
system, which is fast enough for real-time applications. We
believe that with the optimization of the implementation, the
system’s efficiency could be much further improved.
5.5. Discussion

FKP is a new member in the biometrics family compared with
other biometric identifiers. As mentioned in the section of
Introduction, Woodard and Flynn [22,23] did some salient work
to validate the uniqueness of features from finger-back surfaces
by using 3D imaging, and Kumar and Ravikanth [24,25] integrated
2D finger knuckle surface information with the finger shape
information in their system. However, such a system is doomed to
have a relatively large size because they need to collect the image
of the whole hand. Complex preprocessing steps are also needed
to extract the finger knuckle area that only occupies a small
portion of the whole acquired image. In our system, we make use
of a triangular block to control the finger freedom. This gadget
does not sacrifice the user convenience and it is easy to use. Such
a design brings the following merits: (1) the acquisition device
could be easily made to a small size; (2) image around the finger
knuckle area is captured directly, which largely simplifies the
following data preprocessing steps; and (3) since the finger
knuckle is slightly bent when being captured, the distinctive FKP
texture patterns can be clearly imaged, which makes the proposed
FKP system have high accuracy.

Advantages of the proposed system could be reflected by
experimental results on FKP verification. For comparison, experi-
mental results in [22] and [25] are extracted from the original
papers and listed in Table 8 and partial experimental results by
our system are also presented. The scale of the dataset used in our
experiment is much larger than the ones mentioned in [22] and
[25]. Woodard’s result [22] and Kumar’s result [25] were obtained
by fusing information from three and four fingers, respectively.
It can be clearly seen that the proposed system performs much
better even if we incorporate information from fewer fingers.
Particularly, if four fingers are used, our system could achieve an
EER of 0.

It should be noted that although we use a triangular block to
control the finger freedom in FKP image acquisition, there are still
variations for the same finger at different collection sessions.
Sometimes such variations can result in severe affine transforms
or even non-elastic deformations among intra-class FKPs. And as a
result, feature maps of such FKPs can have large matching
distances. Fig. 10 shows a typical example. The two FKP images
in Fig. 10 are from the same finger but are recognized as different
classes in our system. In fact, high intra-class matching distances
(higher than 0.41) mainly resulted from such kind of geometric
deformations. For example, in experiment 1, all the 43 genuine
matchings with matching distances higher than 0.41 are
attributed to such cases. Hence, how to reduce the effects of
affine transforms and deformations will be a direction of our
future work.
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Table 8
Comparison of experimental results.

Method Gallery classes Gallery samples Probe classes Probe samples Finger types for fusion EER (%)

[22] 132 660 177 531 R-index, r-middle, r-ring 5.5

[25] 105 420 105 210 index, middle, ring, little 1.39

Ours 165 990 165 990 R-index, r-middle 0.26

Ours 165 990 165 990 R-index, r-middle, l-index, l-middle 0

Fig. 10. (a) and (b) are two intra-class FKP images captured by our system. (c) and (d) are their ROI sub-images. There is an obvious pose variation between two FKPs and

they are recognized as different classes in our system.

L. Zhang et al. / Pattern Recognition 43 (2010) 2560–25712570
6. Conclusions

This paper presents a new approach to online personal
authentication using finger-knuckle-print (FKP), which has
distinctive line features. A cost-effective FKP system, including a
novel image acquisition device and the associated data processing
algorithms, is developed. A region of interest (ROI) extraction
algorithm is proposed to align and extract the FKP sub-image for
feature extraction. For efficient FKP matching, a feature extraction
scheme is proposed to exploit both orientation and magnitude
information extracted by Gabor filters. To evaluate the perfor-
mance of the proposed system, an FKP database is established,
consisting of 7920 images from 660 different fingers. Extensive
experiments are conducted and promising results demonstrate
the efficiency and effectiveness of the proposed technique.
Compared with other existing finger back surface based systems,
the proposed one has merits of high accuracy, high speed, small
size and cost-effective. It has a great potential to be future
improved and employed in real commercial applications. In the
future, we will focus on how to deal with affine or even non-
elastic deformations between FKP images from the same finger to
further improve the system’s performance.
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