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The panorama stitching system is an indispensable module in surveillance or space exploration. Such a sys-

tem enables the viewer to understand the surroundings instantly by aligning the surrounding images on a

plane and fusing them naturally. The bottleneck of existing systems mainly lies in alignment and natural-

ness of the transition of adjacent images. When facing dynamic foregrounds, they may produce outputs with

misaligned semantic objects, which is evident and sensitive to human perception. We solve three key issues

in the existing workflow that can affect its efficiency and the quality of the obtained panoramic video and

present Pedestrian360, a panoramic video system based on a structured camera array (a spatial surround-

view camera system). First, to get a geometrically aligned 360◦ view in the horizontal direction, we build a

unified multi-camera coordinate system via a novel refinement approach that jointly optimizes camera poses.

Second, to eliminate the brightness and color difference of images taken by different cameras, we design a

photometric alignment approach by introducing a bias to the baseline linear adjustment model and solving

it with two-step least-squares. Third, considering that the human visual system is more sensitive to high-

level semantic objects, such as pedestrians and vehicles, we integrate the results of instance segmentation

into the framework of dynamic programming in the seam-cutting step. To our knowledge, we are the first to

introduce instance segmentation to the seam-cutting problem, which can ensure the integrity of the salient

objects in a panorama. Specifically, in our surveillance oriented system, we choose the most significant tar-

get, pedestrians, as the seam avoidance target, and this accounts for the name Pedestrian360. To validate

the effectiveness and efficiency of Pedestrian360, a large-scale dataset composed of videos with pedestrians

in five scenes is established. The test results on this dataset demonstrate the superiority of Pedestrian360

compared to its competitors. Experimental results show that Pedestrian360 can stitch videos at a speed of

12 to 26 fps, which depends on the number of objects in the shooting scene and their frequencies of move-

ments. To make our reported results reproducible, the relevant code and collected data are publicly available

at https://cslinzhang.github.io/Pedestrian360-Homepage/.
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1 INTRODUCTION

In the fields of surveillance and space exploration, the 360◦ observation toward the surrounding
environment plays a vital role [3, 13, 21]. To help the viewer quickly perceive the environmental
visual information, a panorama stitching system that aligns the surrounding images on a plane
and fuses them naturally is necessarily called for. Such a system presents a consistent horizontal
view and allows the viewer to be unaware of the transition between different images.

Different from image stitching, video panorama stitching requires more strict real-time process-
ing ability and consideration of dynamic foregrounds to obtain a consistent wide field-of-view

(FOV) video efficiently. Three key issues need to be addressed when building a panorama system.
The first one is how to align the images captured under different poses. The second one is the
photometric alignment among the images with varying levels of brightness and colors. The last
one is how to find a seam that bypasses sensitive areas for the human visual system (HVS).

It is necessary to align the images to make them consistent in the overlapping area because
the images that make up the panorama are the 2D projections of the scene in different camera
coordinate systems. Directly stitching the images will cause serious image distortion and cannot
meet the visual consistency. There are mainly two ways to perform image alignment. One is to
align the source image with the target image by image warping [3, 13, 50], which often includes
feature point matching or local mesh-based deformation. The other is to map the images to be
stitched to a standard surface. Compared with the warping-based method, it is more efficient to
map all images to a standard surface with a mapping table, which is suitable for structured camera
arrays. Hence, the panorama video stitching system constructed in this article is also based on
standard surface mapping. Specifically, a unified cylindrical coordinate system to project all images
to the cylindrical surface is established, with which a horizontal 360◦ view with consistent visual
appearance can be synthesized.

To build a unified cylindrical coordinate system for a structured camera array, the poses of the
cameras should be pre-calibrated to estimate the transformation among different images. The in-
trinsic and extrinsic parameters of the cameras on a structured camera array are estimated in the
calibration step. Note that since intrinsic calibration techniques are now quite mature [55], we fo-
cus on the extrinsic calibration procedure in this article. In addition to estimating the relative pose
between adjacent cameras, we also perform joint optimization to eliminate accumulated errors and
coordinate mapping with the cylindrical model to build a unified cylindrical coordinate system.

In addition to the geometric alignment based on camera calibration, the photometric alignment
is also an essential issue for obtaining a visually consistent panorama. Images taken by differ-
ent cameras may have different brightness levels and colors due to different shooting angles and
lighting conditions, which leads to noticeable differences in luminosity on both sides of the seam.
Photometric alignment has been investigated in the literature for multi-camera image stitching [4]
and stereoscopic 3D image rendering [12]. The linear model [4], which only uses a photometric pa-
rameter to adjust the brightness of the images, is not flexible enough to correct the color difference
completely. Spatial neighborhood filtering-based methods [43, 46] are computationally intensive.
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Fig. 1. Comparison of different seam-cutting algorithms. The upper images are the result of a visual saliency-
based scheme [29] and corresponding visual saliency maps of images to be stitched. The visual saliency
strategy failed in such a panorama scene, and the seam cannot avoid the pedestrians. The bottom images
are the result of our instance segmentation-based scheme, which can accurately segment the pedestrians
and ensure their integrity.

We introduce a bias to the baseline linear model, which not only improves the robustness but also
ensures the efficiency of the algorithm.

After the cylindrical projection step for image alignment, the dynamic foreground may cause
misalignment and the ghost phenomenon. To avoid such a ghost phenomenon, the overlapping
area in adjacent images is divided into two parts with a seam. Each part comes from one image
to be stitched. The seam-cutting algorithm amounts to finding a seam in the overlapping area
of the source image and the target image by minimizing the energy function, which is designed
to make the seam pass through the pixel with the smallest difference between the two images.
Then the image fusion is performed around the seam. Approaches solving the problem of optimal
seam search roughly fall into two categories: dynamic programming (DP)-based ones [8, 18]
and graph-cut (GC) based ones [21, 24, 29, 30]. Compared to GC-based solutions, DP-based ones
have the merit of low complexities. Thus, our panoramic video system also resorts to a DP-based
framework for seam-cutting to ensure its low computational complexity.

Seam-cutting can be regarded as a pixel-level optimization problem, but the HVS is more sensi-
tive to high-level semantic objects, such as pedestrians and vehicles. Although the existing meth-
ods have introduced visual saliency [29], they may fail in complex panorama scenarios. As shown
in Figure 1, a visual saliency-based method [29] failed in such a panorama scene, where the seam
cannot avoid the pedestrians. Instead, we notice that the fields of semantic segmentation and in-
stance segmentation are developing rapidly in recent years. Their results are more accurate and
robust in complex scenes compared with visual saliency prediction methods. Based on the preced-
ing considerations, we design a novel seam-cutting algorithm that integrates the results of instance
segmentation into the framework of DP, which can make seams avoid high-level semantic objects.
In our surveillance-oriented system, we choose the most significant target, the pedestrian, as the
avoidance target for the seam, because for most end users, when there are broken pedestrians in
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Fig. 2. The appearance and the detailed internal structure of our panoramic video system Pedestrian360.
The two kinds of color schemes share the same internal structure. Four fisheye cameras are mounted on
a column facing four directions. Each camera has a 180◦ FOV. Adjacent cameras share overlapping FOVs,
and four fisheye cameras cover the column’s whole surrounding area. There are two installation modes for
Pedestrian360: one is the floor-standing mode (left picture), and the other is the desktop mode (right picture).

the panoramic video, they will deem that the video is of poor quality. For other applications, such
as wildlife-oriented surveillance, we only need to change the segmentation target of the semantic
segmentation module to obtain the mask of wildlife. Similarly, we can also achieve simultaneous
consideration of multiple objects via multi-target segmentation. Our system ensures the integrity
of the pedestrians when they pass through the overlapping area of adjacent cameras, and accord-
ingly, it is named as Pedestrian360.

The main contributions of this work can be summarized as follows:

• To build a unified cylindrical coordinate system for a structured camera array, we establish
a novel refinement approach by introducing the closed-loop optimization for the calibration
and perform coordinate mapping with the cylindrical model. Such a unified multi-camera
coordinate system can build a geometrically aligned 360◦ view in the horizontal direction.
• To eliminate the brightness and color difference of images taken by different cameras, we

propose a photometric alignment approach for the closed-loop four-image alignment task by
introducing a bias to the baseline linear adjustment model and solving it with two-step least-
squares. The resulting model not only improves the robustness of the photometric alignment
but also has the advantage of high computational efficiency.
• We consider the high-level semantic information that is sensitive to HVS by incorporating

the results of instance segmentation into the framework of DP in the seam-cutting step.
To our knowledge, we are the first to introduce instance segmentation to the seam-cutting
pipeline, which ensures the integrity of salient objects in a panorama.
• By integrating the aforementioned three contributions, Pedestrian360, a panoramic video

system based on a structured camera array, is established, whose appearance and internal
structure are illustrated in Figure 2. To corroborate its effectiveness and efficiency, exten-
sive experiments have been conducted. All of the codes and the collected dataset used in
our studies related to camera calibration and panoramic stitching have been released to the
community, which will facilitate the relevant studies.

2 RELATED WORK

In this section, we will first introduce the related work of both image and video panorama stitch-
ing, then present the studies in subtasks of panorama stitching, including camera calibration,
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photometric alignment, and seam-cutting. In addition, since Pedestrian360 involves an instance
segmentation model, we will also introduce representative works in the field of semantic and in-
stance segmentation and alternative visual saliency schemes.

2.1 Image and Video Panorama Stitching

There are mainly two ways to perform image alignment for image stitching. One is to apply image
warping to align the source image with the target image, such as feature point matching and local
mesh-based deformation. The other is to map all of the images to be stitched to a standard surface.

The earliest image warping approaches were based on global transformation, and then the ap-
proaches based on the multi-plane assumption were derived. Today, most state-of-the-art image
warping approaches are based on mesh deformation. Global transformation deforms and aligns
the images by adopting the same transformation models (e.g., projective, or affine). Typical studies
depending on global transformation include the work of Brown and Lowe [3, 4]. They estimate
a global warp for alignment between the source image and the target image. This global warp
is devoted to minimizing the alignment errors between overlapping pixels via one uniform global
transformation (mainly homography), which is often not flexible enough. To increase the deforma-
bility of the warp, Gao et al. [10] and Lin et al. [33] divided an image plane into multiple planes,
each plane corresponding to a transformation. These methods perform well on images with sim-
ple scene structures but may fail in more complex situations. The mesh-based alignment scheme
with better local alignment capability is a breakthrough to the image stitching in the early days.
Specifically, the images are divided into uniform meshes, each mesh corresponding to a transfor-
mation. Zaragoza et al. [50] first introduced mesh-based alignment into image stitching, and the
resulting solution is referred to as “APAP” (As-Projective-As-Possible), which locally preserves the
salient structures in the non-overlapping regions and reduces the distortions caused by warping
in the overlapping region. Due to the excellent performance of APAP, numerous later research has
presented different optimization strategies based on various prior constraints [6, 31, 52] for mesh-
based alignment. Image warping research currently focuses more on image alignment and natural-
ness, lacking real-time performance due to the involved time-consuming feature point matching or
mesh optimization operations. Thus, they are not suitable for time-critical panoramic video stitch-
ing. Learning-based approaches [22, 28] model the image alignment as an end-to-end problem.
Their application scenarios are limited by the training datasets, implying their lack of generaliza-
tion ability.

Mapping the images to be stitched to a standard surface is another way to perform image align-
ment. The methods of this branch are suitable for structured camera arrays, where a suitable geo-
metric model is selected for the projection of the unified coordinate system. Geometric models can
be designed or selected according to deployment environments, such as the bowl-shaped model
[51], the boat-shaped model [11], the burger model [53], the spherical model [25], and the cylin-
drical model [49]. Among them, the cylindrical model is the most commonly used in panoramic
stitching. After the images to be stitched are mapped to the geometric model, the stitching re-
sult can be obtained via image fusion [5]. Note that geometric model mapping can generate the
mapping table directly. Each frame of the panoramic video can be generated according to this map-
ping table during the stitching process, which is very helpful for the time performance of the final
system.

Video stitching can be regarded as image stitching for every individual frame. Liu et al. [34] sim-
ply used the stitching model derived from the first few frames to stitch the following frames and
did not consider the moving foregrounds. In contrast, Tennøe et al. [44] and Hu et al. [18] updated
the seam in every frame, which is computationally inefficient. To balance between suppressing the
artifacts and the real-time requirement, He and Yu [13] proposed to first detect changes around
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the previous seams and only perform seam update when there are moving objects across seams.
Kang et al. [21] proposed a seam consistency module to prevent sudden movement between con-
secutive stitched frames by penalizing the horizontal offset of seams in adjacent frames, which will
however lead to inflexibility of the seam. Lee et al. [25] proposed a stitching method that employs
a deformable spherical projection surface where calibrated videos are projected with minimal par-
allax artifacts. However, with the scheme of Lee et al. [25], it is time consuming to generate the
optimized projection surface.

2.2 Calibration and Photometric Alignment of a Multi-Camera System

In structured camera arrays, the relative pose between any pair of cameras is fixed and can be
pre-calibrated to estimate the transformation among different images. The intrinsic and extrinsic
calibration constitute the calibration of a multi-camera system. This section draws focus on extrin-
sic calibration. According to the types of the features used, the existing methods can be divided
into two categories: interest point-based ones and pattern-based ones.

The interest point-based approaches estimate the camera parameters using the interest points
extracted from real scene images [7, 16, 17]. However, interest points are hard to track to obtain
point correspondences between images from adjacent cameras because overlapping areas are se-
verely distorted due to the use of fisheye lenses. Thus, interest point-based approaches are not
suitable for obtaining accurate calibration parameters.

The pattern-based approaches estimate camera parameters using special patterns, including cor-
ners, circles, or lines. Since the configurations of these precisely drawn patterns are known, it is
possible to estimate the camera parameters accurately. This kind of calibration scheme relies on
placing calibration patterns in overlapping FOVs of the cameras [15, 38, 45, 54]. However, no fur-
ther refinement is performed to guarantee high-precision of calibration parameters, which conse-
quently leads to the accumulated errors in calibration results.

Photometric alignment has been investigated in the literature for multi-camera image stitch-
ing [4] and stereoscopic 3D image rendering [12]. Brown and Lowe [4] exploited a linear model
to correct the photometric misalignment for panoramic image stitching. This linear model uses
only one photometric adjustment parameter for each image, namely the overall gain, to adjust the
brightness of the images, which is not flexible enough to correct the difference completely. Liu et
al. [35] matched the intensity histograms of two images to compensate for the brightness differ-
ence. However, this technique does not generalize well to the cases where adjacent cameras share
limited common FOVs. Suen et al. [43] and Uylttendaele et al. [46] proposed locally adaptive pho-
tometric correction methods. Since such methods require spatial neighborhood filtering at each
pixel, they are computationally intensive and thereby are not suitable for time-critical systems.

2.3 Seam-Cutting

Seam-cutting, also called optimal seam search, is to find a seam in the overlapping area of the source
image and the target image. Usually, it is achieved by minimizing the energy function, which is
designed to make the seam pass through the pixel with the smallest difference between the two
images. Optimal seam search strategies can be roughly divided into two categories: DP-based ones
[8, 18] and GC-based ones [21, 24, 29, 30].

DP-based seam-cutting treats each row (column) as one step and searches for the optimal path in
a step-by-step manner, which is memoryless and can be easily implemented [8]. Considering that
the slope of the seam calculated by the traditional DP algorithm is limited—that is, the stitching
points of two adjacent lines can only be offset by 1 pixel—Hu et al. [18] proposed a discontinuous
seam-cutting algorithm so that the stitching points of two adjacent lines in the final optimal seam
can be offset arbitrarily. Although DP-based schemes can only find horizontal or vertical seams,
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they are still applicable in specific situations such as horizontal image stitching due to their high
computational efficiency. For the overlapping area with n pixels, the complexity of the DP-based
algorithms is O (n).

The core idea of GC-based seam-cutting pipelines to find the optimal seam [24] is to construct
an undirected graph based on the image. The vertices in the graph correspond to pixels in the
overlapping area, and the edges correspond to the relationships between adjacent pixels. The cost
of each edge is calculated according to the definition of the energy function. The most straightfor-
ward energy function is a measure of color difference between the pairs of pixels. The more similar
the two pixels connected by the edge are, the better the final stitching visual effect is. The GC algo-
rithm is adopted to minimize the energy function and solve the pathfinding problem. Compared
with the DP-based algorithms, the seams identified by GC-based seam-cutting are not limited to
horizontals or verticals. Li et al. [29] introduced pixel saliency to the traditional GC-based seam-
cutting framework, hoping to avoid the seams that pass through the significant areas to human
perception. As expected, the efficacy of this method highly depends on the accuracy of saliency
prediction. Nonetheless, the performance of modern saliency prediction algorithms for complex
scenes is still far from satisfactory, especially for images like panoramic ones that are usually not
considered when training saliency prediction models.

Liao et al. [30] proposed an iterative algorithm, in which the search of the optimal seam is guided
by quality evaluation of the current seam. Such an iterative approach is doomed to be extremely
time consuming.

Finding the best cut for a graph can have a worst-case O (n2) cost for a graph with n nodes and
its average timings appear to be O (nloд(n)) [24]. Thus, the complexity of DP-based methods is
lower than that of GC-based ones.

2.4 Visual Saliency Models and Semantic Segmentation

Considering that the HVS is more sensitive to high-level semantic information and deep learning
has become a powerful tool to help people understand images [9, 14, 36], here we compare two
types of methods for extracting high-level semantics from images.

Visual saliency models mimic the behavior of human beings and capture the most salient re-
gions from images or scenes. Heuristic-based visual saliency models rely on various priors, such
as center-prior [19], backgroundness-prior [48], and objectness prior [20]. These priors do not
necessarily hold in large-view panoramic images containing a large number of objects. Learning-
based visual saliency models [9, 37, 47, 56] with training data are utilized to find salient regions
from images with complex backgrounds. The data-driven training scheme greatly limits the gener-
alization capabilities of these models. Consequently, these learning-based schemes usually perform
quite well on test images satisfying the conditions on which they were trained. On the contrary,
their performance deteriorates significantly once these conditions are not met, such as the cases
of large-view panoramic images. In the work of Li et al. [29], visual saliency is introduced to the
seam-cutting pipeline to avoid the seams that pass through the significant areas to human percep-
tion. But its effectiveness depends on the performance of saliency prediction, which is not trained
or optimized on panoramic data.

Semantic segmentation, also called scene labeling, refers to the process of assigning a seman-
tic label (e.g., car, person, and road) to each pixel of an image. It is an essential data processing
step for robots and other unmanned systems to understand the surrounding scene. According
to the current research focus, existing methods can be roughly divided into three main categories:
hand-engineer feature-based ones [9, 39], learned feature-based ones [1, 41], and weakly or semisu-
pervised ones [42]. Instance segmentation distinguishes individual information based on semantic
segmentation. The representative method in this field is Mask R-CNN [14], which uses a relatively
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Fig. 3. The video stitching pipeline of Pedestrian360. It consists of three steps: calibration, cylindrical projec-
tion with photometric alignment, and seam update. Before video stitching, the spatial surround-view camera
system calibration is conducted to establish a unified cylindrical coordinate system. The current frames to be
stitched are uniformly projected onto the cylindrical coordinate system for photometric alignment. Whether
or not to perform the optimal seam search depends on the changes around the seam of the previous frame.

simple mask predictor to extend the Faster R-CNN [40] detection model. Compared with the field
of visual saliency prediction, the field of semantic segmentation is more mature. The existing seg-
mentation methods are more robust to the understanding of complex scenes and more accessible
for us to extract the information we want. Our Pedestrian360 is the first to introduce instance
segmentation into the stitching pipeline, hoping to provide more accurate and robust guidance for
the stitching in large-view panoramic images.

3 PEDESTRIAN360 STITCHING PIPELINE

In this section, we briefly describe the video stitching pipeline of Pedestrian360, as well as the
purpose and process of each step. In Sections 4 and 5, the mathematical details of projection and
seam-cutting are described, respectively.

Our panoramic video system Pedestrian360 is based on a structured camera array, which con-
sists of four wide-angle, small-sized 1080P cameras. Its appearance and detailed internal structure
are illustrated in Figure 2. Four fisheye cameras are mounted on a column facing four directions.
Each camera has a 180◦ FOV. Adjacent cameras share overlapping FOVs and four fisheye cameras
together cover the whole surrounding area of the column.

As illustrated in Figure 3, the video stitching pipeline of Pedestrian360 consists of three steps:
calibration, cylindrical projection with photometric alignment, and seam update. First, the spatial
surround-view camera system should be calibrated to establish a unified cylindrical coordinate
system. Next, the four images of the current frame are uniformly projected onto the established
cylindrical coordinate system for photometric alignment. Then, similar to the work of He and Yu
[13], whether there is any object passing through the seam is judged according to the changes near
the seam of the previous frame. If there is an object passing through the seam, the seam needs to
be updated by optimal seam searching. Otherwise, the seam of the previous frame will continue to
be used. Finally, the panoramic image of the current frame is obtained by image blending around
the seam.

To combine the views from multiple cameras, which are tightly structured, it is reasonable to
perform the calibration in advance and reuse the mapping table. Considering that the cameras are
horizontally outward, the cylinder is selected as the projection model to obtain a 360◦ horizontal
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Fig. 4. Calibration of the spatial surround-view camera system and cylindrical projection. (a) Configuration
setup for camera poses calibration. (b) Relationship between the front camera coordinate system and the
cylindrical coordinate system. (c) Mapping relationship between cylindrical coordinates and pixel coordi-
nates of a panoramic image.

view. The geometric relationship between the front camera coordinate system and the cylindrical
coordinate system is characterized by translation and rotation.

In this cylindrical coordinate system, the images to be stitched are projected to the cylinder
surface. The photometric alignment can achieve consistent luminosity and color among these pro-
jected images, which is conducive to the subsequent seam-cutting and blending.

The seam-cutting step intends to find an unobservable seam in the overlapping region of the
aligned images. It can effectively relieve the artifacts generated by local misalignment. Typically,
the seam-cutting approach is usually formulated as an energy minimization problem. Here we con-
sider the human perception of specific objects by integrating the results of instance segmentation
into the DP framework in the seam-cutting step. The choice of the DP-based method to solve the
energy minimization problem is for the consideration of computational efficiency.

4 CYLINDRICAL PROJECTION WITH CONSISTENT BRIGHTNESS AND COLORS

First, the calibration of the spatial surround-view camera system is conducted to establish a unified
cylindrical coordinate system for a combination of the views from multiple cameras. Then the pho-
tometric alignment is performed in an attempt to achieve consistent luminosity and color among
projected images. The geometric alignment and photometric alignment can effectively facilitate
subsequent seam-cutting and blending.

4.1 Calibration of the Spatial Surround-View Camera System and

Cylindrical Projection

The procedure of getting cylindrical projected images mainly consists of three steps: pose initial-
izing and joint optimizing of the spatial surround-view camera system, establishing the camera-
cylinder relationship, and mapping table formulation from the cylindrical projected image to the
original fisheye image.

The core idea of our calibration strategy proposed in this article is illustrated in Figure 4(a). By
placing the chessboard pattern in the overlapping FOV between adjacent cameras, the relative
pose between them can be estimated by making use of epipolar constraints [26]. Here we denote
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the relative pose between the front and left cameras byTLF . Similarly, the other three relative poses
are denoted by TBL , TRB , and TF R .

Note that by multiplying these transformation matrices, we define a new front camera pose after
a closed-loop transformation as

T ′F F = TF RTRBTBLTLFTF F , (1)

where TF F = I . In ideal conditions, T ′F F should be equal to TF F . However, due to accumulated
errors, T ′F F � TF F .

To improve the initial estimation accuracy of camera poses, all camera parameters are refined
by bundle adjustment using a graph-based joint optimization method [23]. The triangulated chess-
board corners and camera poses are jointly optimized with the aim of minimizing the reprojection
errors. The camera poses are represented by the Lie algebra ξ to convert the pose estimation into
an unconstrained optimization problem. For each camera pose ξi , each triangulated chessboard
corner Pi j in the ith camera and its corresponding pixel coordinates ui j , we sum all reprojection
errors up and build up a least-squares minimization problem,

P∗, ξ ∗ = arg min
P ,ξ

1

2

5∑
i=1

Ni∑
j=1

(
ui j −

1

si j
Ki exp

(
ξ∧i

)
Pi j

)
, (2)

where K denotes camera intrinsics and s is the depth. During optimization, the camera poses are
updated to conform toT ′F F = TF F —that is, the accumulated errors are reduced as much as possible.
Now we can obtain four optimized camera poses in the front camera coordinate system, which is
selected as the reference coordinate system.

To merge the views of multiple cameras and facilitate observation, it is necessary to establish a
unified cylindrical coordinate system. As shown in Figure 4(b), the cylindrical coordinate system
is established by translating the front camera coordinate system to the center of four cameras and
rotating it 90◦ around the x-axis so that its z-axis is upward. The center coordinates Pcenter of four
cameras in the front camera coordinate system can be computed as

������
Px

Py

Pz

1

������
=

1

4

������
T −1

F F ·

0
0
0
1

+T −1
LF ·

0
0
0
1

+T −1
BF ·

0
0
0
1

+T −1
RF ·

0
0
0
1

������
. (3)

The transformation matrix from cylindrical coordinates to front camera coordinates, which com-
bines the rotation matrix and the translation vector, is

TFW =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
1 0 0 Px

0 0 −1 Py

0 1 0 Pz

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (4)

At this point, the relationship between the other three cameras coordinates and cylindrical coor-
dinates can be determined as

TLW = TLFTFW

TBW = TBLTLFTFW

TRW = TRBTBLTLFTFW .

(5)

The last step is to form the mapping table from the cylindrical projected image to the original
fisheye image. As shown in Figure 4(c), the pixel coordinates (u,v ) in the panorama stitching result
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Fig. 5. The image stitching pipeline of Pedestrian360. The input images are mapped to the cylindrical coordi-
nates according to the calibration parameters, and the images with the consistent exposure are obtained by
photometric alignment. In seam-cutting, the mask is obtained by instance segmentation to guide the seam
to avoid the pedestrians. Finally, the panoramic image is generated by image fusion.

are mapped to cylindrical coordinates (xw ,yw , zw ) as

xw = cos(u ·w/2π ) · r
yw = sin(u ·w/2π ) · r
zw = (h/w −v ) · hscale ,

(6)

where r is the radius of the cylinder and hscale is the scale factor in the z-axis. The transformation
from the cylindrical coordinates to the original fisheye image pixel coordinates (uF ,vF ) can be
expressed as [

uF

vF

]
= KF ·TFW ·

⎡⎢⎢⎢⎢⎢⎢⎢⎣
xw

yw

zw

1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (7)

where uF and vF are the original fisheye image pixel coordinates. Note that Equation (7) contains
two dehomogeneous operations. The coordinates under the other three cameras can be computed
similarily. As shown in Figure 5, after camera calibration and cylindrical projection, geometrically
consistent cylindrical projected images are produced for subsequent steps.

4.2 Photometric Alignment

Different shooting angles or lighting conditions of different cameras may bring photometric mis-
alignments in the projected images. This will lead to noticeable differences in luminosity on both
sides of the seam. We decompose the images into HSV channels and perform photometric align-
ment on each channel to achieve the purpose of unifying the brightness and color of projected
images. Next, the proposed adjustment approach of a single channel is described.

First of all, the intensity adjustment model is required to be determined. The photometric align-
ment approach proposed in the work of Brown and Lowe [4] is widely used due to its extensible
model and low computational complexity. Considering its merits, we choose the intensity adjust-
ment model proposed by Brown and Lowe [4] as the baseline to improve it. Specifically, we intro-
duce a bias term b to the baseline adjustment method based on the gain д. The resulting model is
I ′ = д · I + b. With this model, the degree of freedom of image intensity adjustment is increased,
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Fig. 6. A seam in the overlapping area of two images and its cost calculation in DP.

so additional constraints can be introduced to the baseline model [4], which only aligns mean
intensity values of overlapping areas in adjacent images. Specifically, in this work, the variance
alignment is selected as an additional type of constraint. In other words, in addition to the mean
values, the variances of overlapping parts of adjacent images are calculated and aligned using the
adjustment model.

Denote the mean value and standard deviation of the image i in the overlapping area of image
i and image j by mi j , σi j , and those of the image j by mji , σji . The alignment equations of mean
values and standard deviations of overlapping regions are

дi ·mi j + bi = дj ·mji + bj

дi · σi j = дj · σji , ij ∈ {FR,RB,BL,LF },
(8)

a total of eight equations. We design a two-step least-squares-based approach to solve this system
of equations. The four equations only containing the gains {дi } are solved first. Considering there
is no non-zero solution for these equations, it is reasonable to compute the least-squares solution
and perform normalization by dividing the mean value of the gains. Then, substituting the result
into Equation (8), the following equations about bi can be obtained,

������
1 −1 0 0
0 1 −1 0
0 0 1 −1
−1 0 0 1

������
·
������
bF

bR

bB

bL

������
=

������
дRmRF − дFmF R

дBmBR − дRmRB

дLmLB − дBmBL

дFmF L − дLmLF

������
, (9)

which do not have an exact solution. The approximate solution can be obtained by SVD decom-
position. After the parameters of the intensity adjustment model are solved, the four projected
images are adjusted accordingly to obtain the projection results with the consistent brightness lev-
els and colors for subsequent seam-cutting and blending. As shown in Figure 5, after photometric
alignment, photometrically consistent cylindrical projected images are available for seam-cutting.

5 PEDESTRIAN-AWARE SEAM-CUTTING

With four geometrically and photometrically aligned horizontal images, it is required to find four
vertical seams. For each vertical seam, the seam-cutting cost for pixels can be computed row by
row from one endpoint to the other in a DP manner. As illustrated in Figure 6, one pixel in each row
of the overlapping area is selected as the dividing point. The final vertical seam can be obtained by
connecting these dividing points. The extraction of a horizontal seam is similar but will operate
in a column-by-column fashion. Similar to the work of Hu et al. [18], the state transition function
of DP in row i and column j is as follows:

M (i, j ) = λSem(i, j ) +min
k

(M (i − 1,k ) + Spa(i, j,k )), (10)
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Fig. 7. The segmentation result of the person category by Mask R-CNN [14].

where λ is the weight factor of the proposed semantic cost and k covers all possible column values
j in the previous row. In our implementation, for the purpose of saving time, we set j−6 < k < j+6.
Sem(i, j ) is the semantic cost of selecting the pixel (i, j ) as the dividing point, whereas Spa(i, j,k )
is the spatial cost of the path from (i − 1,k ) to (i, j ). By DP, a path with the minimum total cost
can be found.

The calculation of the spatial cost Spa(i, j,k ) is illustrated by the dotted line in Figure 6, which
actually reflects the differences of each group of pixels that the seam of adjacent rows of pixels
pass through. In this work, Spa(i, j,k ) is defined as the following form:

Spa(i, j,k ) = edд([i, j − 1], [i, j]) +
k∑

p=j

edд([i − 1,p], [i,p]), (11)

where edд([i1, j1], [i2, j2]) describes the difference in two pixels (i1, j1) and (i2, j2) of the two images
as

edд([i1, j1], [i2, j2]) =
(I1 (i1, j1) − I2 (i2, j2))2 + I1 (i2, j2) − I2 (i1, j1))2

2
. (12)

The semantic cost Sem(i, j ) is the binary mask of the semantic object, as illustrated by the in-
stance segmentation result in Figure 5. Here we choose Mask R-CNN [14] pre-trained on the COCO
dataset [32] as the segmentation model and adopt the mask of person category. Figure 7 presents
two examples of the person category segmentation result. The results of instance segmentation are
integrated into the state transition function of DP in an attempt to provide semantic guidance for
the seam. So far, the instance segmentation mask is incorporated into the seam-cutting algorithm,
resulting in the seams that avoid the pedestrians.

To enable the reader to have a clear and overall understanding of our pedestrian-aware seam-
cutting, the algorithmic details are summarized in Algorithm 1. The four input geometrically and
photometrically aligned cylindrical projected images of the algorithm can be obtained by offline
calibration of the cameras’ pose parameters and online photometric alignment. Photometric align-
ment is carried out at each frame to ensure that the alignment parameters can adapt to the scene’s
changes. The frequency of photometric alignment can be appropriately reduced to make a tradeoff
between time cost and performance.

Our proposed seam-cutting pipeline mainly comprises three stages. First, before the DP, it is
determined whether the seams need to be updated according to adjacent frames’ difference. If not,
the previous frame’s seams can be directly inherited as the result of the current frame. The second
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ALGORITHM 1: Algorithm of pedestrian-aware seam-cutting

Input: The current frame number t . t = 0 denotes the first frame; Four seams of the last frame
seamt−1[i], i = 1, 2, 3, 4 if t > 0; Four geometrically and photometrically aligned cylindrical
projected images It [i], i = 1, 2, 3, 4; Four overlapping area masksoverlap[i], i = 1, 2, 3, 4, where
overlap (p) is the overlapping area of It (p) and It (p + 1).

Output: Four seams of the current frame seamt [i], i = 1, 2, 3, 4.
1: for p = 0 : 4 do

2: 1. Determine whether or not seam update is required.

3: if t > 0 and the changes between the last frame and the current frame near seamt−1 (p)
are smaller than the threshold then

4: seamt (p) ← seamt−1 (p);
5: continue;
6: end if

7: 2. Forward DP.

8: 2.1 Generate the instance segmentation masksm1 andm2 of It (p) and It (p+1), respectively.
Generate the semantic cost Sem ←m1 ∪m2.

9: 2.2 Compute the state transition function values M (i, j ) of the pixels in the first row of
overlap (p).

10: for all (i, j ) ∈ overlap (p) where i = 0 do

11: M (i, j ) ← λSem(i, j ) + edд([i, j], [i, j + 1]), where edд() is defined in Equation (12);
12: end for

13: 2.3 Compute the state transition function values M (i, j ) of the pixels in the remaining rows
of overlap (p).

14: for all (i, j ) ∈ overlap (p) where i > 0 do

15: Search the minimum temporary cost as
16: mt ← min

k
(M (i − 1,k ) + Spa(i, j,k )),where k = max(0, j − 5) : min(j + 6, c );

17: Update the last step table as laststep (i, j ) ← arg min
k

(M (i − 1,k ) + Spa(i, j,k )), where

Spa() is defined in Equation (11);
18: Update the state transition function value M (i, j ) ← λSem(i, j ) +mt ;
19: end for

20: 3. Backward DP.

21: 3.1 Search the destination end of the optimal path in the last row that minimizes the total
cost as end ← arg min

j
M (r − 1, j ), where (r − 1, j ) ∈ overlap (p).

22: 3.2 Add the destination (r − 1, end ) into seamt (p).
23: 3.3 Trace back to find the points passed by the optimal path.
24: for i = r − 1 : 1 do

25: end ← laststep (i, end );
26: Add the point (i − 1, end ) into seamt (p);
27: end for

28: end for

29: return seamt [i], i = 1, 2, 3, 4;

stage, forward DP, is mainly to calculate the state transition function Equation (10). The last stage,
backward DP, is to infer the optimal seam from the state transition function.

The main computational complexity lies in the second stage. At step 2.3 in Algorithm 1, each
pixel in the overlapping area needs to be traversed. From Figure 5, it can be observed that the
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Fig. 8. Stitching examples for five different scenes in our dataset by our Pedestrian360.

overlapping area of adjacent images is about 1
4MN , where M and N are the number of rows and

columns of the panorama, respectively. When traversing each pixel, it is required to traverse k
values to calculate the spatial cost from the last row to the current row. In our implementation,
there are at most 10 cases for k’s values. The preceding operations need to be performed four times
for the four overlapping regions, and the final complexity is O (4 × 1

4MN × 10). After omitting the
coefficient, it is O (MN ). The time complexity is proportional to the image size, implying that the
algorithm can be accelerated by downsampling the image.

6 EXPERIMENTAL RESULTS AND DISCUSSIONS

6.1 Experiment Setup, Benchmark Dataset, and Evaluation Metrics

We evaluated the proposed Pedestrian360 in both indoor and outdoor scenarios by placing the
column equipped with the spatial surround-view camera system consisting of four fisheye cameras
(refer to Figure 2 for details) in various scenes.

To facilitate the study of panorama stitching, we have established and released a large-scale
benchmark dataset. The dataset provides videos with pedestrians in five scenes, including two
indoor scenes and three outdoor scenes, as shown in Figure 8. The indoor scenes include the cases
of multiple-person walking, up to 4 moveable persons. In the outdoor scenes, up to 10 walking
pedestrians appear in the video simultaneously. To increase the diversity and facilitate the storage,
we consciously set the frame rate to 10 fps when capturing videos and covered as much variety as
possible in short videos. The sample of each scene contains fisheye videos taken in four directions,
each with 200 frames. In total, 4,000 (5 × 4 × 200) images were collected. The resolution of
the fisheye cameras is 1920 × 1080. This dataset was utilized in the evaluation and comparison
experiments of photometric alignment and seam-cutting.

In addition, to make the calibration results reproducible, we also provide experimental data for
extrinsic calibration. The data was collected by placing a chessboard with 9 × 6 squares in the
common FOVs of adjacent cameras. Each square of the chessboard is 10 cm in length. In each
common FOV, two images were taken from adjacent cameras respectively, and eight images were
collected from four common FOVs.

Pedestrian360 is implemented with C++, except that Mask R-CNN is implemented in PyTorch
and runs on GPU. The two modules communicate with each other through a socket connection.
All experiments were carried out on a workstation with a 3.0-GHz Intel Core i7-5960X CPU and
an Nvidia GeForce GTX 3080 GPU. In all experiments, we set λ = 1, 000 to make the seam avoid
pedestrians as much as possible. The relevant code and collected data are publicly available at
https://cslinzhang.github.io/Pedestrian360-Homepage/.

Extensive experiments were carried out on each stage of Pedestrian360 to verify its efficacy,
including calibration of the spatial surround-view camera system, photometric alignment, and
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Fig. 9. Camera poses and reprojection errors before/after refinement. (a) Initialized poses. (b) Poses after
refinement.

seam-cutting. In addition, Pedestrian360 was compared with competing systems in a system view.
Finally, the limitations of Pedestrian360 are discussed for further possible improvement.

In the first experiment, the performance of structured camera array calibration was assessed by
a commonly used calibration metric: reprojection error. The reprojection error is the difference
between the observed 2D position and the projected 2D position of the corresponding 3D point
based on the estimated pose. It is valid in calibration evaluation in a multi-camera system because
it can reflect the accuracy and the consistency of camera poses’ estimation.

The performance of photometric alignment was assessed by the intensity differences between
the overlapping areas of adjacent views. If the brightness levels and colors of adjacent images are
well adjusted and unified, the intensity differences of their overlapping areas should be as slight
as possible.

The quantitative metric for seam-cutting evaluation proposed in the work of Kang et al. [21] was
adopted to demonstrate the advantages of Pedestrian360, which was conducted by counting the
number of frames with broken objects. For each stitched panoramic frame, four volunteers were
invited to judge whether any pedestrian or object was broken. For each video clip, the mentioned
counting operations were performed to the results of every competing approach evaluated. To
avoid the subjective bias, all of the stitched frames were randomized and were unknown to subjects.
A lower ratio of broken frames means more appealing stitching results for human perception.

6.2 Performance of Structured Camera Array Calibration

In this experiment, we evaluated the performance of the structured camera array calibration and
demonstrated the effectiveness of the proposed joint optimization approach. The pose initialization
was achieved by making use of epipolar constraints using a chessboard placed in the common FOVs.
Then the poses of four cameras were jointly optimized in a closed-loop manner.

Figure 9 shows poses of the structured camera array before and after joint optimization. In
Figure 9(a), because of accumulated errors, the new front camera pose CamF ′ obtained after a
closed-loop transformation deviates from the original poseCamF by a large margin, whereas both
cameras in Figure 9(b) almost coincide. This indicates that by the proposed joint optimization
approach, the accumulated errors of the spatial surround-view camera system can be significantly
reduced, and consequently the optimized poses are more accurate than the initial ones.

The quantitative results are presented in Figure 9, including the average reprojection errors of
each camera using the initially estimated poses and the poses after joint optimization. A smaller
reprojection error typically indicates more accurate pose estimation. It can be observed that the
reprojection errors of all cameras noticeably decline and the average reprojection error of all

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 17, No. 4, Article 136. Publication date: November 2021.



Pedestrian-Aware Panoramic Video Stitching Based on a Structured Camera Array 136:17

Fig. 10. Visual results of photometric alignment. (a) Result without using photometric alignment. (b) Result
of Brown and Lowe [4]. (c) Result of Liu et al. [35]. (d) Our result.

Fig. 11. Quantitative results of different photometric alignment schemes. The x-axis is the frame number
in the test video. The y-axis is the intensity difference. In addition, “before_Y” is the result without using
photometric alignment, “opencv_Y” is the result of Brown and Lowe [4], “HM_Y” is the result of Liu et al.
[35], and “our_Y” is our result.

cameras decreases from 0.1881 to 0.1825, which demonstrates the effectiveness of the proposed
joint optimization approach.

6.3 Photometric Alignment

In this experiment, we demonstrate the advantages of the proposed photometric alignment ap-
proach. To show the efficacy of our adjustment model, we compared our results with the results
without using photometric alignment and the results of the baseline [4] qualitatively and quantita-
tively. In addition, we extended the histogram-matching-based photometric alignment method of
two images in the work of Liu et al. [35] to four images and compared its results with our method.

We use an example in Figure 10 to illustrate the effectiveness of our adjustment model. Fig-
ure 10(a) is the result of direct stitching of geometrically aligned cylindrical projected images
without performing photometric alignment. Figure 10(b) is the stitching result using the base-
line photometric alignment approach [4], Figure 10(c) is the result of our implementation of Liu
et al. [35], and Figure 10(d) is the result of Pedestrian360. In Figure 10(a), it can be noticed that the
seam is very obvious, and the overall brightness transition is uneven, unlike images taken under
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Fig. 12. Comparison of seam-cutting algorithms, including GraphCut [24], DP [8], Perception [29], and Iter-
ative [30]. The stitching results of AutoStitch [4] without using seam-cutting are taken as the control group.

natural conditions. In Figure 10(b), although using the baseline [4] the unnaturalness is reduced,
the overall brightness inconsistency on both sides of the seam can still be clearly perceived. In
Figure 10(c), the histogram matching used in the work of Liu et al. [35] results in the distortion on
the floor, and obvious light and dark transition can be observed on the column on the right part
of the image. By contrast, the overall brightness transition in Figure 10(d) is relatively smooth and
natural, and no obvious seam can be perceived. The apparent brightness differences in the sky in
Figure 10(b) are not noticeable in Figure 10(d). The preceding results imply that our method has a
stronger capability to make the images near the seam be blended more naturally.

In addition, the quantitative comparison on a test video in our dataset was conducted. Figure 11
presents the intensity differences between adjacent views of the three settings. It can be observed
that when the original intensity difference (colored in gray) is large, our intensity difference (col-
ored in green) is significantly lower than that of Brown and Lowe [4] (colored in red) and Liu et al.
[35] (colored in blue). Furthermore, our method can maintain a relatively smooth result due to its
multi-parameter adjustment model. From the preceding experimental results, the conclusion can
be drawn that our approach can guarantee the robustness and stability of photometric alignment
to a great extent.

6.4 Seam-Cutting

To verify the efficacy of our pedestrian-aware seam-cutting algorithm, we compared our scheme
with four state-of-the-art seam-cutting algorithms, namely GraphCut [24], DP [8], Perception [29],

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 17, No. 4, Article 136. Publication date: November 2021.



Pedestrian-Aware Panoramic Video Stitching Based on a Structured Camera Array 136:19

Table 1. Percentage of Broken Frames of the Competing Seam-Cutting Methods

Seam-Cutting
Indoor-1 Indoor-2 Outdoor-1 Outdoor-2 Outdoor-3 Average

Pedestrian Object Pedestrian Object Pedestrian Object Pedestrian Object Pedestrian Object Pedestrian Object
DP [8] 55.5% 55.5% 6% 6% 21.5% 70% 16% 19.5% 7% 8% 21.2% 31.8%

GC [24] 26.5% 26.5% 1% 1 1.5% 3.5% 6.5% 6.5% 5.5% 5.5% 8.2% 8.6%
Perception [29] 46% 46.5% 0.5% 0.5% 7.5% 7.5% 13.5% 13.5% 3.5% 3.5% 14.2% 14.3%
Iterative [30] 22.5% 37.5% 3.5% 18% 23.5% 23.5% 4.5% 4.5% 8.5 9.5% 12.5% 18.6%
Pedestrian360 4.5% 4.5% 0% 0% 0% 5% 0% 1.5% 1% 1.5% 1.1% 2.5%

Table 2. Comparison of the Speeds of Different Seam-Cutting
Algorithms on Different Scales

Scale 1.0× 0.5× 0.25×
DP [8] 140 ms 98 ms 67 ms

GC [24] 3,500 ms 730 ms 190 ms
Perception [29] 7,156 ms 2,040 ms 1,032 ms
Iterative [30] 22,180 ms 12,667 ms 5,368 ms

Ours (not update seams) 44 ms 40 ms 38 ms
Ours (update seams) 137 ms 96 ms 85 ms

and Iterative [30]. In addition, the stitching results of AutoStitch [4] without using seam-cutting
were taken as the control group. We first adopted the same preprocessing pipeline of cylindrical
projection and photometric alignment to ensure the fairness of the comparison. Then different
seam-cutting algorithms were applied to the image blending stage.

Figure 12 presents the results of seam-cutting comparison on two groups of images. There exist
ghost phenomenons in the results of AutoStitch [4] without using a seam-cutting algorithm. In the
results of GraphCut [24] or Perception [29], the resultant pedestrian’s body is partially missing or
misaligned when there are pedestrians in the common FOV. The root cause lies in that a certain
area passed by the seam belongs to the human body area in one image, whereas this area belongs
to the background area in another image. Similarly, DP [8] failed in the group of the first row, and
Iterative [30] failed in the group of the second row. Such incompleteness or misalignment of faces
and bodies will cause great confusion to human perception. By contrast, our method ensures the
integrity of the pedestrians, contributing to the visually appealing results.

The results of quantitative comparison on five videos in our dataset are reported in Table 1,
which lists the percentage of frames with broken pedestrians and objects. In each test scenario,
our method can achieve a very low ratio of broken frames, especially for pedestrians. However,
the pixel-level scheme DP [8] results in a large number of broken frames without considering
semantic information, especially in video Indoor-1 with many pedestrians. In terms of the average
percentage of broken frames, ours is also the lowest one, which demonstrates the superiority of
our pedestrian-aware seam-cutting algorithm.

We recorded the average stitching time per frame using different seam-cutting algorithms. To
speed up the algorithm, the cylindrical projected images were downsampled, and seam-cutting
was performed on a small scale. Then the seam masks were enlarged to the original resolution for
thereafter image blending. The results are presented in Table 2, in which the full resolution 1.0×
is 500 × 1200. The recorded time was consumed to find four seams using each algorithm. Experi-
mental results show that Pedestrian360 can stitch videos at a speed of 12 to 26 fps by selectively
updating seams and accelerating based on scaling. The stitching speed depends on the number of
objects in the shooting scene and their frequencies of movements. When there are not too many
dynamic objects in the scene passing through the seams, the seams rarely need to be updated,
and the stitching speed of 26 fps can be achieved. Conversely, if the scene is crowded with pedes-
trians and objects pass through the seams in every frame, the stitching speed will be reduced to
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Table 3. Qualitative Comparison of Different Panoramic Stitching Systems

Panorama System Stitching Model Calculation Photometric Alignment Seam-Cutting Stitching Time

Surveillance [13] Feature extraction and warping No Graph-cut 12 fps

FPGA [49] Camera pose calibration and
cylindrical projection

No Direct image blending with-
out searching seams

30 fps

Rich360 [25] Camera pose calibration and de-
formed spherical projection

The baseline in the work of
Brown and Lowe [4]

Graph-cut 0.034 fps

VRWorks360 [27] Feature extraction and warping No Direct image blending with-
out searching seams

18 fps

MineSurveillance [2] Hybrid image feature detection
and registration with projection
transformation

Only image preprocessing
for defogging

Direct image blending with-
out searching seams

21 fps

PanoramicVideo [35] Pre-alignment by vertical trans-
lation

Histogram matching Spatio-temporal seam opti-
mization

0.417 fps

Pedestrian360 Camera pose calibration and
cylindrical projection

Linear adjustment model
with bias solved by two-step
least-squares

DP considering semantic in-
formation

12–26 fps

12 fps. Our system’s bottleneck is instance segmentation, which takes 43 ms per frame running
on GPU, occupying about 50% of the stitching time for each frame. Mask-RCNN is an instance
segmentation framework that supports multiple categories of instances. Replacing it with a faster
network is a choice for acceleration. The time costs of the variant of the GC [29] and the iterative
method [30] are extremely high due to a series of extra time-consuming steps like image saliency
prediction and multiple rounds of iterative optimization. In terms of the speed alone, DP [8] can
achieve performance comparable to ours, but from Table 1, its ratio of broken frames is highest
among all evaluated methods, implying that its stitching performance is far from satisfactory. The
preceding analysis implies that compared with its counterparts, our seam-cutting algorithm not
only can achieve better stitching results but also is more suitable for time-critical applications such
as surveillance or driver-assistance systems.

6.5 Comparison of Panorama Systems and Failure Cases Discussions

In this section, Pedestrian360 is compared with six existing representative panorama systems
from four aspects—stitching model calculation, photometric alignment, seam-cutting, and stitch-
ing time—and Table 3 lists the qualitative comparison results. Note that most of algorithms that
are close to real time are implemented by generating mapping tables in advance, including those
in other works [13, 27, 49]. However, only performing feature points extraction and matching on
a single group of images without accurate calibration may lead to errors. The application of this
inaccurate mapping relationship to subsequent video frames results in adverse effects of misalign-
ments [13, 27]. Our camera calibration pipeline with the novel joint optimization guarantees the
accuracy of camera poses and contributes to geometrically consistent projected images. In the
work of Bai et al. [2], image preprocessing for defogging helps unify different mine images’ bright-
ness, but it is hard to be extended to daily surveillance. The spatio-temporal seam optimization
proposed in the work of Liu et al. [35] is extremely time consuming. By contrast, our pipeline
considers more robust photometric alignment and seam-cutting while maintaining satisfactory
time performance. In addition, our consideration of the semantic information is more suitable for
surveillance applications than the competitors. In Pedestrian360, pedestrians will not be broken or
misaligned, which will facilitate subsequent computer vision tasks such as pedestrian recognition.

Figure 13 presents four examples where Pedestrian360 fails to produce visually compelling re-
sults. In Figure 13(a) and Figure 13(b), because the ground and ceiling areas do not conform to
the assumption of a cylindrical geometric model, there is an obvious misalignment at the seam. In
the case of the rich texture of the ceiling and floor, the cylindrical model is not fully applicable,
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Fig. 13. Failure cases. (a, b) Failure cases caused by cylindrical projection. (c) A failure case of seam-cutting
caused by motion blur. (d) A failure case of photometric alignment.

whereas in an outdoor environment where the ground is flat, the stitching results are better. To
increase the adaptability of the geometric model, Lee et al. [25] designed a deformable spherical
projection surface to minimize parallax artifacts. However, it is time consuming to generate the
optimized projection surface. Thus, one of our future works is to design deformable models that
can adapt to various environments while maintaining acceptable time costs.

Figure 13(c) is a failure case of seam-cutting caused by motion blur. When a pedestrian quickly
passes near the camera, motion blur will affect the accuracy of instance segmentation, causing
the seam to fail to avoid the pedestrian. Fortunately, Pedestrian360 is a plug-in system in which
the instance segmentation module can be replaced. Considering that instance segmentation is a
rapidly developing research field, Mask-RCNN can someday be replaced with a more advanced
module that can handle motion blur better to further improve Pedestrian360’s performance.

Figure 13(d) is a failure case caused by photometric misalignment. There is a mismatch on the
floor behind the lady. This is because the adjacent cameras are oriented differently, one toward the
wall and the other toward the well-lit sky, resulting in different lighting conditions. When the light-
ing conditions of adjacent cameras are extremely different, photometric alignment performance
will be affected.

7 CONCLUSION

In this article, we presented Pedestrian360, a panoramic video system based on a structured cam-
era array. Pedestrian360 provides a 360◦ horizontal panorama with geometric and photometric
consistency. This is achieved by our novel refinement approach for extrinsic calibration and the
proposed robust photometric alignment scheme. Being aware of the sensitivity of human percep-
tion to high-level semantic objects, we are the first to introduce the instance segmentation into
the seam-cutting pipeline and propose a pedestrian-aware seam-cutting algorithm, ensuring that
pedestrians in the panorama will not be split, which is meaningful for human observation and
computer vision tasks. Through extensive experiments, the effectiveness and efficiency of Pedes-
trian360 are verified and guaranteed. Compared with competing systems, its core advantages lie
in the generation of highly consistent panorama in 12 to 26 fps and the consideration of seman-
tic information. Our future work is to improve the cylindrical projection and design deformable
models that can adapt to various environments while maintaining acceptable time costs.
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