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Abstract—Recently, an increasing number of researchers have
been dedicated to transferring the impressive novel view syn-
thesis capability of Neural Radiance Fields (NeRF) to resource-
constrained mobile devices. One common solution is to pre-train
NeRF and bake it into textured meshes which are well supported
by mobile graphics hardware. However, the training process of
existing methods often requires several hours even with multiple
high-end NVIDIA V100 GPUs. The underlying reason is that
these schemes mainly rely on photometric rendering loss, neglect-
ing the geometric relationship between the pre-trained NeRF and
the baked results. Standing on this point, we present ATM-NeRF
(Accelerating Training for Mobile rendering based on NeRF),
which is the first to apply effective geometric regularization
constraints during both the pre-training and the baking training
stages for faster convergence. Specifically, in the initial NeRF
pre-training stage, we enforce consistency of the multi-resolution
density grids representing the scene geometry to mitigate the
shape-radiance ambiguity problem to some extent, achieving a
coarse mesh with smoothness. In the second stage, we utilize
the positions and geometric features of 3D points projected from
the pre-trained posed depths to provide geometric supervision
for joint refinement of geometry and appearance of the coarse
mesh. As a result, our ATM-NeRF achieves comparable rendering
quality to MobileNeRF with a training speed that is about
30× ∼ 70× faster while maintaining finer structure details of
the exported mesh. Our source code and the demo video have
been released at https://cslinzhang.github.io/ATM-NeRF/.

Index Terms—Neural Radiance Fields, mobile rendering, novel
view synthesis, image reconstruction.

I. INTRODUCTION

IN recent years, Neural Radiance Fields (NeRF) [1] have
gained significant popularity as an innovative solution to

the task of novel view synthesis [2]–[4]. Its impressive ability
to render scenes with photorealistic details has contributed to
its growing acclaim. Subsequently, numerous follow-up works
have sprung up to speed up its training [5]–[10], rendering
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[11]–[22], or expand its application scenarios [23]–[35]. Mo-
tivated by the above successful works in the NeRF field, more
and more researchers are striving to introduce it into rendering
on mobile devices [36] to serve Augmented Reality (AR)
or Virtual Reality (VR) applications. However, the volume
rendering algorithm of NeRF involves high computational
complexity and mismatches the capacity of mobile graphic
hardware. Existing solutions to this problem mainly fall into
two categories, methods based on Neural Light Field (NeLF)
[37]–[39] and methods based on NeRF baking [10], [11], [16],
[18], [20], [49]–[51]. In the following, we will analyze their
advantages and limitations in detail. Methods based on NeLF
distill the NeRF representation into NeLF through a teacher-
student model. Compared with NeRF where the colors of
multiple sampling points along a ray need to be predicted
for volume rendering, NeLF only requires one forward pass
per ray through the neural field to obtain the final pixel
color. Therefore, NeLF significantly reduces the computational
cost of rendering and is mobile-friendly. Unfortunately, the
distillation from NeRF to NeLF suffers from slow convergence
for the following two reasons. On the one hand, NeLF directly
takes a parameterized ray as input, which makes it hard to learn
to predict the appearance of adjacent rays. Considering that
adjacent pixels may have different appearances, especially in
regions with high image gradients, how to distinguish adjacent
rays with close positions in parameterization is an essential
yet tricky issue to be explored. On the other hand, NeLF
obtains fewer training samples than NeRF on the same amount
of training images without ray sampling. Data augmentation
is usually needed to prepare sufficient training data for the
convergence of the NeLF model, which is undoubtedly cum-
bersome and time-consuming.

NeRF baking aims to train a NeRF model in the NeRF
pre-training stage and store its geometric and photometric
information in a new scene representation through the baking
training stage. The most acceptable representation for mobile
devices is polygonal meshes [10], [20], [49], whose rendering
has been well supported by nearly all mobile devices. The
baking output of these mesh-based schemes typically consists
of a polygonal mesh, corresponding texture maps, and a
lightweight neural shader. During inference, the textured mesh
can be efficiently rendered under the mature rasterization
pipeline and the neural shader decodes the features stored in
the texture maps into view-dependent colors to achieve real-
time rendering. While NeRF baking is efficient in terms of

https://cslinzhang.github.io/ATM-NeRF/


SUBMITTED TO IEEE TRANSACTIONS ON MULTIMEDIA, 2024 2

0 50 100 150 200

ATM-NeRF

NeRF2Mesh

MobileNeRF

t/mins

Sy
nt
he
tic
36
0º

MobileNeRF NeRF2Mesh ATM-NeRF (Ours)

(a) (b) (c)

500 1000 150050

1✕

32✕

70✕

Fig. 1. Training efficiency and compatibility of our ATM-NeRF. All the training stages were run on our desktop computer with a single NVIDIA 3090
Ti. (a) Comparison of training time with typical competitors focusing on mobile NeRF rendering on the Synthetic 360◦ dataset along with the speedup
factors compared with MobileNeRF. (b) Rendering results of compared methods after 10 minutes’ training. Obviously, our ATM-NeRF achieves the most
photorealistic rendering quality with the fastest training speed. (c) Compatibility of ATM-NeRF on a variety of common devices.

rendering speed, most existing schemes still cost several hours
for training. The bottleneck is how to refine the mesh geometry
and bake the proper appearance to each vertex at the same
time. To address this problem, most existing methods tend to
refine the baked mesh with a discrete optimization strategy by
adding and removing mesh vertices or faces, which is slow and
memory-intensive. Instead, our geometric regularizers enable
mesh refinement through continuous gradient-based optimiza-
tion to make gradient updates directly to vertex positions. This
guarantees faster and more stable baking training.

On account of the limitations aforementioned, as far as
we know, there is still no existing NeRF method specially
designed for training acceleration for mobile rendering. To fill
in this gap to some extent, we propose the geometry-aware
ATM-NeRF under the mainstream NeRF baking framework
with efficient geometric regularizations and our contributions
are mainly threefold:

1) ATM-NeRF is proposed as the first work to incorporate
geometric constraints to accelerate NeRF training for
mobile rendering. These geometric constraints guide the
optimization of the density field, mesh vertices and geo-
metric features, respectively. As a result, our ATM-NeRF
achieves comparable rendering quality to MobileNeRF
with a rendering speed that is about 30× ∼ 70× faster.

2) In NeRF pre-training, a simple yet effective density
regularization strategy, that utilizes the density field
of an underfitted grid-based NeRF to regularize that
of the current model, is introduced. This regularized
optimization of scene geometry alleviates photometric
overfitting and the shape-ambiguity problem it causes
in NeRF training.

3) Two novel depth-based regularization terms are con-
structed in the baking training stage. They provide con-
tinuous gradient updates to the mesh vertices, without
mesh division or decimation, thereby promoting a fast
and stable convergence in the bottleneck baking training
stage.

II. RELATED WORK

Neural Radiance Fields (NeRF) [1] have constituted a
remarkable breakthrough in synthesizing novel views of com-
plex scenes. Thanks to the implicit volumetric representation,

NeRF achieves state-of-the-art rendering performance with
photorealistic details. However, NeRF needs to query MLPs
multiple times for densities and colors of all sampling points
for alpha-composition, which can be time-consuming during
both training and inference. To tackle this challenge, numerous
advanced techniques have emerged, including notable works
specifically designed for NeRF rendering on mobile devices.

Efficient NeRF Training. DS-NeRF [5] assumes that most
of a scene’s geometry consists of empty space and opaque
surfaces. It takes advantage of the depths from structure-
from-motion (SFM) as supervision for fast training. This
geometric supervision makes DS-NeRF render better images
given fewer training views while training 2-3× faster. DVGO
[6] believes that explicit expression has a faster convergence
speed compared to implicit expression of NeRF, so they model
the geometry and the appearance of the scene as density voxel
grids and feature voxel grids, respectively. In particular, the
feature grids collaborate with a shallow MLP to obtain view-
dependent colors from different views. Directly optimizing
these density and feature grids reduces the rendering time
of NeRF to 15 minutes. Fridovich-Keil et al. [8] proposed a
view-dependent sparse voxel grid without any neural networks,
named Plenoxels. Each voxel stores spherical harmonic coef-
ficients, which are trilinearly interpolated to quickly compute
the color and opacity of each sampled point. To achieve high
efficiency on a single GPU, Plenoxels also prunes the empty
voxels and follows a coarse-to-fine optimization strategy. Ten-
soRF [9] represents the neural radiance as feature grids. Each
feature grid is modeled as a 4-channel tensor, which stores
the 3D position of a sampling point and the dimension of
features. Then this 4D tensor can be factorized into multi-
ple compact low-rank tensor components to compress high-
dimensional data, significantly reducing the memory usage.
The most outstanding work for speeding is the famous Instant-
NGP [7], which replaces the frequency position encoding
used in NeRF with a multi-resolution hash encoding structure
with optimizable parameters, which is trivial to parallelize on
modern GPUs. Making full use of the parallelism, Instant-
NGP implemented the whole system using fully-fused CUDA
kernels, producing reliable rendering results in seconds.

3D Gaussian Splatting. Recently, 3D Gaussian Splatting (3D-
GS) [40] has emerged as a significant advancement in im-
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proving both training efficiency and rendering performance for
novel-view synthesis. Compared with implicit NeRF, 3D-GS
employs an explicit radiance field-based scene representation
using a large number of 3D anisotropic balls, each modeled
using a 3D Gaussian distribution.

Although the highly parallel optimization of these Gaussian
balls significantly improves training efficiency, the parameters
within millions of Gaussians used to represent the scene
require a huge amount of memory space. Therefore reducing
memory usage without sacrificing rendering quality is critical
for the development of 3D-GS. Scaffold-GS [41] utilizes the
initialization points in SfM to construct a sparse grid of anchor
points, each of which has a set of learnable Gaussians attached
to it. Aggregated gradients of these neural Gaussians guide the
growth of anchor points while pruning strategies are developed
to eliminate trivial anchors. Compact3D [42] tries to reduce the
memory usage of 3D-GS by not only reducing the number of
Gaussians but also compressing the Gaussian parameters based
on a vector quantization algorithm. Besides, as a commonly
used strategy for compression, several octree-based algorithms
[43], [44] were developed for more efficient representation.

Mesh reconstruction is another challenging yet essential task
for 3D-GS to support downstream visual applications. SuGaR
[45] introduces a regularization term that encourages the align-
ment between 3D Gaussians and the surface of the scene. Then
the mesh is extracted from these aligned Gaussians by Poisson
reconstruction, which will be further refined with a refinement
strategy. Chen et al. [46] proposed NeuSG, which combines
NeuS [47] and 3D-GS by joint optimization to achieve highly
detailed surface recovery. 3DGSR [48] demonstrates the ad-
vantage of incorporating an implicit signed distance field into
3D-GS in ensuring mesh reconstruction quality. Despite the
above efforts to solve surface reconstruction from 3D-GS, the
reconstructed mesh still suffers from aliasing and hole issues.
NeRF Baking for Fast Inference. NSVF [11] maintains a
sparse voxel octree for storing voxel-bounded implicit fields,
which ensures a more effective ray sampling strategy by skip-
ping unnecessary points for fast rendering. It is usually more
than 10 times faster than the original NeRF while achieving
higher rendering quality. In SNeRG [50], the scene appearance
is divided into the view-invariant diffuse component and the
view-dependent specular component. Both components are
stored in sparse voxel grids for efficient look-up. During infer-
ence, deferred rendering is used for decoding the grid features
with the input view direction to achieve real-time rendering. Yu
et. al. [18] proposed a novel data structure called PlenOctree
to replace the traditional NeRF representation. Specifically,
leaf nodes of this Octree structure store the density values
and spherical harmonics required for scene representation. In
addition, to convert NeRF representation to PlenOctree more
directly, this study proposed an improved NeRF model (NeRF-
SH) to generate spherical harmonic representations without in-
putting data from different views into the network. Compared
to NeRF, PlenOctree renders more photorealistic images with
a rendering speed that is over 3000 times faster. KiloNeRF
[16] demonstrates that real-time rendering can be achieved
by replacing NeRF’s deep MLP networks with thousands of
tiny MLPs. To train these tiny MLPs, the author proposed

a three-stage training strategy. In the first stage, an original
NeRF was trained and then a point-to-point distillation was
conducted in the second stage to transfer the prediction results
of the native NeRF MLPs to the tiny MLPs. Finally, these tiny
MLPs are further fine-tuned with the empty space skipping
strategy during training and the early ray termination strategy
during rendering. MERF [51] works by projecting 3D samples
onto three 2D projections that correspond to the cardinal axes,
which are called tri-planes. To more efficiently deal with the
large-scale unbounded scene, the authors of MERF modified
the contraction function in [27] so that ray-AABB intersections
can be computed trivially. During training, Instant-NGP [7]
is used to predict the values of grid points and tri-plane
pixels. Then the values of sampled points are obtained through
trilinear or bilinear interpolation before volume rendering,
ensuring a lossless baking result. Although the above methods
can achieve real-time rendering, few of them can be applied
to low-resource devices, especially mobile devices such as
tablets and smartphones due to their voxel representation of
the baking output, which is memory consuming.
NeRF for Mobile Devices. BakedSDF [10] is aimed at
reconstructing high-quality meshes in large, unbounded real-
world scenes through three stages. In the first stage, the
scene was constructed by combining the benefits of mip-NeRF
360 [27] for representing unbounded scenes with the well-
behaved surface properties of VolSDF’s [52] hybrid volume-
surface representation. Then in the second stage, this hybrid
representation was baked into a high-resolution mesh and a
visibility culling strategy was implemented to avoid generating
unnecessary meshes in invisible areas. Finally, in the third
stage, BakedSDF assigned a diffuse component and a set of
spherical Gaussian lobes for each vertex of the mesh to con-
struct their view-dependent appearance. Although BakedSDF
can generate high-quality grids to support various downstream
applications, it still needs a laptop for rendering and its
webviewer cannot be viewed on a common smartphone.

MobileNeRF [20] is the first to achieve real-time rendering
on all mobile devices based on NeRF, in which a new NeRF
representation based on polygonal meshes to be rendered un-
der the traditional polygon rasterization pipeline is proposed. It
consists of two training stages and an export stage to output the
textured mesh along with a neural shader. Specifically, in the
first stage, the scene was initialized as a grid mesh with a fixed
topology, whose vertex positions are trainable and optimized
during the whole training process, and the intersection points
of the camera ray with this initial mesh were regarded as the
sampling 3D points to input into the NeRF model. Considering
that the traditional rasterization pipeline shows a slow speed
in coping with semi-transparent objects, the opacities of all
intersection points predicted by the trained NeRF model are
binarized to 0 or 1 for fast rendering. After training, the
optimized mesh was exported as an OBJ file and the features
of the intersection points were stored in the PNG file. Also,
the weights of the shallow MLP taking the features and the
view direction as inputs are stored in a JSON file for deferred
rendering. Although MobileNeRF shows excellent rendering
quality and speed even in smartphones, it takes over 20
hours for training for its time-consuming traverse of the mesh
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triangles in a z-buffer order and the ray intersection operation.
NeRF2Mesh [49] outputs a delicate mesh with specular and

diffuse maps for more intuitive rendering. A coarse mesh is
produced by a grid-based NeRF in the first stage and is refined
via a novel adaptive refinement algorithm in the second stage.
In terms of this refinement strategy, the mesh is rasterized
under a differentiable framework and these rasterization points
are utilized as the input of the network to modify the mesh
vertices along with the network parameters. Meanwhile, the
faces of the mesh are also decimated or divided adaptively
according to the rendering error. Thanks to the decomposition
of the scene appearance, the training time of NeRF2Mesh is
nearly 1 hour. However, it sacrifices the rendering quality for
the geometric structure and the rendering image may suffer
from noise and needs anti-aliasing when rendering on the
HTML pages.

In order to reduce latency when running neural rendering
on mobile devices, the goal of MobileR2L [21] is to perform
neural network forward propagation only once to obtain syn-
thesized images. However, existing neural light field network
designs require a significant amount of memory to render
high-resolution images, which exceeds the memory limitations
of mobile devices. To deal with this problem, they do not
pass the same number of rays as pixels forward at once, but
only pass a portion of the rays forward and upsample the
output into a high-resolution image to learn all pixels by a
newly introduced super-resolution module. Although it can
achieve outperforming rendering speed on mobile devices due
to the one-passing forward mechanism and the well-designed
network, the convergence of the distillation model is extremely
slow due to the characteristic of NeLF as analyzed in Sec. I,
leading to a training time of over 1 day.

The latest work based on NeLF to speed up mobile train-
ing and rendering is LightSpeed [39]. It revisits the classic
light slab (two-plane) representation, which is the preferred
representation for interpolating between light field views.
This low-dimensional ray representation enables the use of
feature grids to learn 4D ray space, which significantly speeds
up NeLF’s training and rendering in LightSpeed. Although
LightSpeed provides superior rendering quality and achieves a
significantly improved training speed compared to the previous
light field method [21], it still needs dozens of hours due to
the difficult convergence of networks brought by the nature of
NeLF and the same time-consuming training scheme, teacher-
student model based distillation, as MobileR2L [21]. Also,
since a single light slab is only suitable for modeling a frontal
scene and cannot capture light rays that are parallel to the
planes, LightSpeed costs extra efforts to composite multiple
light slab representations to learn the full light field for non-
frontal scenes. This divide-and-conquer strategy brings the
inconvenience of manually setting hyperparameters (such as
the number of partitions) when coping with non-frontal scenes.

III. PRELIMINARIES OF NERF BAKING

NeRF baking is currently the state-of-the-art framework
for NeRF rendering on mobile devices. In general, NeRF
baking is to extract and store necessary attributes (position,

features, colors, etc.) of a precomputed NeRF into a new
scene representation for fast rendering. During inference,
the view-dependent color can be efficiently “recovered” by
a neural decoder namely neural deferred shader from the
baking outputs instead of large amounts of forward passing
to MLPs in the original NeRF. The most commonly used
baking representation currently is polygonal mesh with texture
maps, as it can be well supported by modern graphic rendering
pipelines. Next, we will introduce the typical framework of
mesh-based NeRF baking containing two stages, which we
named “NeRF pre-training” and “baking training”, denoted
by S1 and S2 respectively for brevity.
NeRF Pretraining. Motivated by the awesome rendering
performance of NeRF, which demonstrates the potential of
its implicit volumetric representation, a grid-based NeRF is
usually pre-trained in the first stage to provide reliable ren-
dering priors. As in NeRF, the typical rendering loss based on
photometric differences is utilized as the dominant guidance in
this stage. Concretely, the scene representation is optimized by
penalizing the distance between the predicted colors through
volume rendering with the ground truth colors of training
images:

LS1
C = Er∥CS1(r)− Cgt(r)∥22, (1)

where r is the sampling ray formulated by r(t) = o + td,
where o and d represent the origin and the direction of the
ray respectively. The predicted color CS1(·) is obtained by
alpha-compositing the radiance ck at the depth tk:

CS1(r) =
K∑

k=1

TkαkcS1
k , Tk =

k−1∏
l=1

(1− αl), (2)

where opacity αk represents the point-wise weight and can
be given by αk = 1 − exp(−σkδk). δk = tk+1 − tk is the
distance between adjacent samples on r. The density σk and
view-dependent appearance ck can be queried by passing the
3D position of sampling points pk = r(tk) to three important
MLPs denoted by Dθ,Fθ and Hθ respectively:

σk = Dθ(pk;θD), (3)

fS1
k = Fθ(pk;θF ), (4)

cS1
k = Hθ(fS1

k ,d;θH), (5)

where θ is the set of MLP parameters and the subscript
indicates the corresponding network it belongs to. The first
part in (·) gives the input while the other one after the
semicolon stands for the parameters to be optimized. Dθ is
the density network producing the density of the sampling
points, determining the weight of each sampling point in
accumulation. Fθ only takes the 3D position as the input to
produce the view-invariant geometric features. These features
are stored in images as texture maps of the mesh. The small
decoder MLP Hθ acts as the deferred shader in the traditional
rendering pipeline, which takes the direction and features
output from Fθ. The deferred rendering strategy is the key to
real-time (usually in milliseconds) NeRF rendering on mobile
devices. After S1, a coarse mesh M can be generated as
a geometric initialization for scene representation either by
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Fig. 2. System overview of ATM-NeRF. Posed RGB images are the only input required for our method, and after a two-stage training, we obtain a textured
mesh that includes both specular and diffuse components. In addition to the classic rendering loss, important geometric regularization modules are integrated
into the whole training, labeled with light-colored rectangles (green, blue and yellow). Optimizable parameters are colored in dark blue. The corresponding
geometric supervision loss terms are marked with orange arrows. These regularization terms facilitate an accelerated convergence of the network without
additional priors.

marching cubes [53] or based on a pre-defined mesh topology
[20].
Baking Training. This stage is responsible for jointly re-
fining the geometry and appearance of the coarse mesh to
ensure the correct rendering results under the rasterization
pipeline instead of volume rendering. It is worth mentioning
that rendering pipelines implemented in typical hardware do
not natively support semi-transparent meshes. Therefore, we
have to rasterize the mesh and force the appearance of the
intersection point to approach the ground truth rendering color.
Mathematically, denoting the intersection point of an arbitrary
ray r with the mesh M as pint, its predicted color can be
given as:

fS2
int = Fθ(pint;θF ,θM), (6)

CS2(r) = Hθ(fS2
int,d;θH,θM), (7)

where θM is the optimizable variables of M (such as vertex
positions, faces, topology, etc.), In this stage, the optimization
is still guided by the rendering loss:

LS2
C = Er∥CS2(r)− Cgt(r)∥22. (8)

After this stage, we can obtain the refined mesh and its
feature/texture maps. Also, the weights of the neural deferred
shader H can be recorded in advance to decode the view-
dependent color during inference.

IV. METHOD

A. Overview

Following the classic framework of NeRF baking in Sec.
III, our method comprises two stages: NeRF pre-training
and baking training (denoted by S1 and S2 respectively for

brevity), as depicted in Fig. 2. Existing schemes mainly relying
on photometric supervision exhibit slow convergence during
training. To overcome this problem, we introduce geometric
regularization to both stages, not only accelerating training
speed especially for the bottleneck baking stage, but also
achieving comparable rendering quality with the state-of-the-
art MobileNeRF. Technically, in S1, posed RGB images are
required as input to train a grid-based NeRF to obtain a coarse
mesh. During this stage of training, we utilize an underfit-
ting grid-based NeRF storing scene densities with multiple
resolutions for density regularization. After this stage, depth
maps generated from the pre-trained NeRF corresponding to
each training image are also stored for future use. In S2, the
coarse mesh is rasterized under a differentiable rasterization
framework, through which its geometry and appearance are
optimized jointly. The posed depth maps from S1 provide
geometric supervision in terms of the position and the geo-
metric embeddings of the coarse mesh for refinement. Finally,
we can obtain the refined mesh with diffuse and specular
components, as well as a neural deferred shader for decoding
view-dependent appearance, which is ready-to-use for real-
time mobile rendering.

B. NeRF with Density Regularization (S1)

In S1, we train a grid-based NeRF model as in [49], taking
advantage of its well-performing volume rendering algorithm
to provide the appearance priors of the scene. Also, the density
field of NeRF produces a topologically reliable geometry for
further refinement.
Appearance. We decompose the appearance into view-
independent diffuse reflection and view-dependent specular
reflection as in [49]. Mathematically, the appearance c of an
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arbitrary 3D point p along the sampling ray r(t) = o + td,
can be given by:

cS1
d , fS1 = Fθ(p;θF ), (9)

cS1
s = Hθ(fS1,d;θH), (10)

cS1 = cS1
d + cS1

s , (11)

where the subscripts “d” and “s” denote the diffuse and
specular components, respectively. The index k is omitted for
brevity. cd is only dependent on the point position and cf can
be determined by both the diffuse feature fS1 and the direction
d, which is consistent with perception.

warm-up trainingw/o regularization ATM-NeRF (S1)RGB

Fig. 3. The effectiveness of the density regularization on the mesh
geometry. From left to right, we presented the GT RGB image, meshes
generated by the variant without any regularization, the warm-up training
and our ATM-NeRF respectively. For a clearer illustration, we do not employ
any mesh post-processing techniques after marching cubes.

Geometry. As analyzed in NeRF++ [33], optimizing the 5D
function in NeRF from a set of training images can encounter
critical degenerate solutions that fail to generalize to novel test
views, in the absence of any regularization. Such phenomena
are encapsulated in the shape-radiance ambiguity, wherein the
training field can fit training images perfectly for an incorrect
geometry, leading to unsatisfactory rendering performance in
novel views. To deal with this problem, we employ a simple
yet effective density mesh regularization to utilize the density
field of an underfitted grid-based NeRF model to regularize
that of the current model. In detail, we conduct a warm-
up training [54], [55] on a grid-based NeRF [7] for a few
iterations only under photometric supervision to witness the
abrupt decrease of rendering loss. Then we partition the scene
into multi-resolution grids with three different grid sizes (128,
192 and 256) denoted by Ĝs1 , Ĝs2 , Ĝs3 respectively, where
each grid cell records the density σ of grid center point pc

predicted by this warm-up model:

Ĝsi(pc) = D̂θ(pc; θ̂D), i = 1, 2, 3, (12)

where D̂θ is the density network in the warm-up stage pa-
rameterized by θ̂D. Afterward, we guide the formal training
by enforcing consistency between the predicted density field
Gsi(pc) = D(pc;θDθ

) and the warm-up one. Thus, the final
density regularization loss term can be formulated by:

LD =

3∑
i=1

∑
pc

∥Ĝsi(pc)− Gsi(pc)∥22. (13)

As shown in Fig. 3, although the mesh produced in the
warm-up stage is coarse, it effectively regularizes the scene
geometry via LD, improving the reconstruction quality of the
mesh surface with fine details compared with the variant of

ATM-NeRF without any regularization. Also, our experiments
demonstrate that LD can also bring benefit to the rendering
quality based on the mechanism that better geometry may also
encourages better appearance due to their correlation in joint
optimization.
Loss Function. The total loss function of this stage can be
formulated as:

LS1 = LS1
C + β1LD, (14)

where β is set to 0.0001 and LS1
C is given in Eq. 1.

After this stage, we generate a coarse mesh by applying
the marching cubes algorithm [53] to the density grid Gs1 for
further refinement. This coarse mesh provides a satisfactory
geometric initialization of the scene with the assistance of
our density regularization. Besides, the depth maps from all
training views are also stored, based on which can recover a
coarse point cloud of the scene to provide efficient point-to-
point supervision when modifying the mesh vertex in the next
stage.

C. Depth Guided Baking Training (S2)

Baking training in S2 refines the geometry and the appear-
ance of the coarse mesh under a differentiable rasterization
framework to approach the ground truth rendering results.
However, in practice, this training process can be really time-
consuming as the bottleneck of training efficiency since it
forces the distribution of sampling points on the ray to be
single-hot, which is a more strict constraint for the network.
Although existing schemes introduce extra loss terms such as
the binary loss [20] for the opacity or the smoothness loss
[49] for mesh refinement to assist convergence, their training
speed still needs improvement. Instead, we introduce depth-
based regularization terms in S2 to make full use of the
geometric priors obtained in S1 and dig into the geometric
relationship between the pre-trained mesh and the refined one.
Specifically, we have discovered that: (1) The 3D points pro-
jected by training poses and corresponding depths to the world
coordinate system, namely projected points, can effectively
capture both the appearance and the geometry of the scene
even without fine-tuning as shown in Fig. 4 (a); (2) The MLP
networks achieve a faster convergence when queried with these
projected points than rasterization points, which are obtained
by vertex interpolation after mesh rasterization, as proved in
Fig. 4 (b). Based on the above observations, we make full
use of the geometric cues provided by the projected points to
form two regularization loss terms, achieving state-of-the-art
training speed. In the following, we will provide a detailed
explanation of these two regularizations respectively: position
regularization and geometric feature regularization.
Position Regularization. The vertex positions of the coarse
mesh are optimized along with the network parameters to en-
sure accurate rasterization rendering results. The optimization
of vertex positions instead of mesh division and decimation
enables continuous gradient updates to a consistent set of
mesh points. This continuous strategy is faster compared with
discrete optimization which involves adding and removing ver-
tices. In addition, the position regularizer further improves the
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appearancegeometry

(a) (b)

Fig. 4. Inspiration of depth-guided regularization. (a) visualizes the
geometry and appearance of projected points synthesized by a training pose
and corresponding depths. (b) gives the comparison of the training loss during
the first 100 iterations by inputting the projected points and the rasterization
points to MLPs, respectively.

convergence speed by utilizing the projected points’ positions
as supervision to the vertex positions to help faster and more
stable mesh refinement.

Formally, denoting the set of vertices in the initial mesh by
V , for each vertex vi ∈ V , we add a trainable offset ∆vi to
form V̂ for rasterization. For each training image, we rasterize
the mesh under each sampling ray rj (j ≤ Nr) to generate the
rasterization points and record their 3D positions pj(j ≤ Nr)
in P . Nr is the number of sampling rays. This rasterization
step enables a more efficient sampling strategy, targeting points
near the surfaces based on depth maps from S1. Thanks to
nvdiffrast [56], the rasterization and interpolation operations
are fully differentiable. During vertex optimization, we add
a direct supervision on P provided by the projected points
whose positions can be given by P̂ = {p̂j |p̂j = oj + tjdj}.
tj is the depth value of the j-th pixel in the depth image.
Thus, the position regularization loss LP can be formed as
the weighted distance between the P and P̂:

LP =

Nr∑
j=1

wj∥pj − p̂j∥1, (15)

wj = ψ(∥pj − p̂j∥2 − δ), (16)

where wj is the adaptive weight that avoids depth outliers to
dominate the regularization. ψ(·) is the exponential function. δ
is set to 0.1 empirically. L1 loss is applied to be more resistant
to outliers.
Geometric Feature Regularization. Compared with the view-
independent diffuse reflection, the specular one is more dif-
ficult to learn. The geometric features f in Eq. 9 encode the
view-independent geometry, helping to recover the specular
color with different view directions. Similar to position reg-
ularization, we employ the geometric features of p̂j ∈ P̂ as
supervision for fast training. To further reduce the difficulty
of convergence, we employ a residual network Rθ to learn a
residual feature [57], [58] ∆f to help penalize the distance
between the geometric embeddings of P and those of P̂ .
Mathematically,

∆fS2
j = Rθ(pj ;θR,V), (17)

fS2
j = ∆fj + Fθ(pj ;θF ,V), (18)

f̂
S2

j = Fθ(p̂j ;θF ,V). (19)

The final geometric feature loss can be formulated by:

LE =

Nr∑
j

wj∥fS2
j − f̂

S2

j ∥22, (20)

where wj is given in Eq. 16.
Loss Function. Similar to S1, the rendering loss LS2

C can
be calculated by Eq. 8 where CS2(r) can be obtained by
substituting p with pj in Eq. 9-11. The total loss function for
S2 consists of the rendering loss, the position regularization
loss and the feature regularization loss:

LS2 = LS2
C + β2(LP + LE), (21)

where β2 is set to 0.1.
After finishing this stage, the refined mesh with both diffuse

textures and specular feature maps is generated for mobile
rendering. Besides, the weights of the deferred shader H are
also recorded in a JSON file for decoding view-dependent
color with arbitrary input direction during inference. It is
worth mentioning that the export of the final textured mesh
can be highly paralleled on GPU without traversing all mesh
fragments with certain z-buffering orders as in MobileNeRF
[20].

V. EXPERIMENT

A. Experimental Setup

Implementation Details. All training and testing experiments
in this paper were conducted on the same desktop computer
equipped with a single GPU of NVIDIA GeForce RTX 3090
Ti except for the mobile rendering speed testing in Table IV.
As for network architectures, following [49], we utilized the
multi-resolution hash-grid encoder [7] and shallow MLPs to
construct the density network Dθ and the feature network
Fθ. Specifically, Dθ consists of a hash-grid encoder with 16
resolution levels and a 2-layer MLP with 32 hidden channels
as the decoder. The density of an arbitrary 3D point in the
scene can be output from Dθ using its 3D position as the
input. In a similar way, Fθ is composed of a hash-grid
encoder with 16 resolution levels, followed by an encoder
with a 3-layer MLP with 64 hidden channels to achieve
the 3-channel geometric features f and the 3-channel view-
independent diffuse component cd. As for the neural deferred
shader Hθ, it is formed by a 2-layer MLP with 32 hidden
channels to convert the geometric features f to the view-
dependent specular color cs. Additionally, the residual network
Rθ to assist the optimization of geometric features possesses
the same MLP structure as Fθ.
Datasets. We evaluated our ATM-NeRF on three typical
datasets: the synthetic 360◦ scenes from [1], the forward-
facing scenes from [59], and unbounded 360◦ outdoor scenes
from [27]. In detail, we conducted our experiments (training
and testing) on the resolution of 800 × 800 for synthetic
360◦ and 1008 × 756 (4× down-scaled from the original
resolution) for forward-facing, and 1237× 825 for Mip-NeRF
360. These three datasets encompass a wide range of synthetic
and real-world scenes, as well as bounded and unbounded
environments, on which we all achieved excellent performance
on training speed and rendering quality.
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TABLE I
QUANTITATIVE COMPARISON ON TRAINING TIME ↓ (MINS) WITH RELATED METHODS ON TYPICAL DATASETS

Method Synthetic 360◦ [1] Forward-facing [59] Mip-NeRF 360 [27]
S1 S2 total speedup S1 S2 total speedup S1 S2 total speedup

LightSpeed [39] - - 240 5.16× - - 900 0.92× - - - -
3D-GS [40] - - 9 137.67× - - 35 24.49× - - 37 51.97×
SuGaR [45] - - - - 10 97 107 8.01× 10 171 181 10.62×

MobileNeRF [20] 326 913 1239 1× 327 530 857 1× 627 1296 1923 1×
NeRF2Mesh [49] 7 32 39 31.77× 10 49 59 14.53× 11 63 74 25.99×

ATM-NeRF 7 11 18 68.83× 10 19 29 30.00× 12 27 39 49.31×

B. Training Efficiency

To demonstrate our superior performance in training accel-
eration, we compared our ATM-NeRF with two representative
NeRF baking schemes and two GS-based competitors. The
former includes MobileNeRF [20] and NeRF2Mesh [49],
which enable real-time rendering on nearly all mobile devices
(especially smartphones). The latter consists of the original
3D-GS [40] and mesh-targeting SuGaR [45]. Also, the results
of the SOTA NeLF-based method, LightSpeed [39], were
also provided for comparison. We trained all the compared
methods on the three datasets introduced in Sec. V-A and
recorded the training time in Table I. In detail, we provided
the training time of both training stages (if has) as well as
the total time. For a fair comparison, we uniformly included
the time for mesh exportation in S2. It can be seen from
Table I that the S2 (NeRF baking) stage is the bottleneck of
training speed acceleration, and our ATM-NeRF tackles it with
our introduced depth-based regularization terms, achieving
high training efficiency, accelerating MobileNeRF by about
30 ∼ 70 times. The reason accounting for our slightly slower
training speed in S1 compared with NeRF2Mesh is the density
regularization, which is of benefit in the convergence speed in
S2 and the improvement of rendering quality.

Additionally, SuGaR forces to encourage the alignment
between 3D Gaussians and the surface of the scene, which
is time-consuming. On the contrary, our training time is
comparable to the fast 3D-GS on the Mip-NeRF 360 dataset
and even better than 3D-GS on the Forward-facing dataset. 3D-
GS loses its superiority in training efficiency on the Forward-
facing dataset as this dataset provides images from limited
camera viewpoints other than 360◦ covered views, which is
still an immature case in the area of 3D-GS.

For a more intuitive demonstration of our capability of
rapid convergence, we offered two visualization results that
showcase the updates in rendering quality during the training
process. First, we plotted the curves of validation PSNR over
training time for all evaluated methods on typical scenes in
Fig. 5. From Fig. 5, it can be observed that our ATM-NeRF
converges to excellent mobile rendering quality with the fastest
training speed even for difficult real-world scenes. Second, to
present our acceleration to the bottleneck NeRF baking stage
(S2), we presented the rendered images of testing samples
under rasterization from competitors after a certain training
time (1min and 5mins) during S2 in Fig. 6. NeRF2Mesh
[49] witnesses a decrease in rendering quality at 5 minutes,

room

S1 S2

S1 S2

Fig. 5. PSNR over training time (mins) of two stages. The trex, bicycle
scenes are selected from the Forward-facing dataset and the Mip-NeRF 360
dataset, respectively.

implying its instability of training, while MobileNeRF [20]
suffers from an extremely slow convergence. Only our method
achieves a satisfactory rendering quality within just 1 minute’s
baking training while maintaining a stable training process.

GT NeRF2Mesh MobileNeRF ATM-NeRF

1min 1min 1min

1min 1min 1min

5mins 5mins 5mins

5mins 5mins 5mins

Fig. 6. Rendered samples during baking training. The rasterization
rendering results on the lego scene (from Synthetic 360◦) and the trex scene
(from Forward-facing) rendered by NeRF2Mesh, MobileNeRF and our ATM-
NeRF after training for 1 minute and 5 minutes in the S2 stage.
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C. Rendering Performance

To evaluate the rendering ability and compatibility of our
method, we tested the rendering quality and inference speeds
on various devices as listed in Table II. The power is the GPU
power for the NVIDIA card, and the combined max CPU and
GPU power for integrated GPUs.

TABLE II
HARDWARE CONFIGURATIONS OF DEVICES USED IN OUR RENDERING

EXPERIMENTS

Device Type OS GPU Power
iPhone XR Phone iOS 15.4 Integrated GPU 6W

iPad Tablet iOS 15.5 Integrated GPU 10W
Macbook Pro Laptop macOS Catalina 10.15.6 Integrated GPU 61W

Desktop PC Ubuntu 18.04 NVIDIA RTX 3090 Ti 350W

Rendering Quality. We reported the rendering quality on
tested datasets quantitatively and qualitatively in Table III and
Fig. 7 respectively. In the quantitative experiment, the common
metrics PSNR, SSIM [60], and LPIPS [61] were utilized. “-
” stands for not applicable to the corresponding dataset. The
best and the second-best results are highlighted in bold black
and blue, respectively. We also provided the results of the
pioneering work in NeRF baking, namely SNeRG [50] for
reference.

It can be seen from Table III that SNeRG [50] is unable
to represent the complex unbounded 360◦ scenes. In terms of
scene geometry, only our method and NeRF2Mesh [49] are
capable of generating meshes with regular geometric surfaces,
which can be applied to various downstream reconstruction
tasks, and our ATM-NeRF outperforms NeRF2Mesh in ren-
dering quality. In terms of the NeLF-based LightSpeed [39], it
focuses on photorealistic rendering while its training speed still
falls far behind methods based on 3D-GS or NeRF as proved in
Tabel I. Also, it can only provide the light field representation
that needs further interpretation for visualization rather than an
intuitive mesh with geometric surfaces. Although 3D-GS [40]
shows outstanding performance due to flexible 3D Gaussian
representation, its Gaussians do not correspond well to the
actual surface of the scene, making mesh exportation a difficult
task. SuGaR [45] forces these Gaussians to align well with
the surface of the scene for better geometry yet witnesses an
obvious decrease in rendering quality.

On the other side, in the qualitative evaluation, we tested
all compared methods directly on the HTML pages with a
zoom-in operation to examine more rendering details. From
the zoom-in comparison recorded in Fig. 7, it can be seen
that ATM-NeRF exhibit comparable (even better in the ficus
scene) rendering quality as MobileNeRF in the zoom-in view.
NeRF2Mesh [49] exhibits white noises around the cables in
the room scene and blur in the grass in the stump scene. In
contrast, our method achieves the most photorealistic results
even under magnification.
Rendering Speed. We revealed the rendering speed measured
by Frame Per Second (FPS) on various devices in Table IV,
and the results of competitors are obtained from their official
interactive demos on their project pages. The notation M

N
indicates that M out of N testing scenes failed to run due to
out-of-memory errors. The best and the second-best results are

MobileNeRF NeRF2Mesh ATM-NeRFGT

Fig. 7. Zoom-in comparison. The rendering results of other rivals were
obtained from the demos released on their project pages. Our ATM-NeRF
used the same web viewer provided by NeRF2Mesh for a fair comparison.
From top to bottom are the ficus scene from Synthetic 360◦, the room scene
from Forward-facing dataset and the stump scene from Mip NeRF 360 dataset.
Our approach renders high-quality images even for zoom-in views.

highlighted in pink and green, respectively. Table IV clearly
indicates that ATM-NeRF evidently outperforms MobileN-
eRF [20] with non-surfaced mesh thanks to our geometry-
regularized mesh. What’s more, we can operate at interactive
frame rates across all test scenarios on all test devices and
achieve state-of-the-art rendering speed on Synthetic 360◦. For
example, MobileNeRF [20] fails to render the “stump” scene
from Mip-NeRF 360 on iPhone XR while our ATM-NeRF can
give satisfactory results as shown in Fig. 1 (c), proving our
compatibility on mobile devices.

D. Mesh Quality

Mesh Geometry. Apart from the exceptional rendering perfor-
mance, our ATM-NeRF is also capable of establishing meshes
with fine geometry. We provided qualitative assessments of the
extracted meshes produced by different methods, as shown
in Fig. 8 (NeRF-based) and Fig. 9 (GS-based). It can be
observed in Fig. 8 that MobileNeRF [20] performs poorly in
scene geometry recovery and our ATM-NeRF reconstructed
reasonable geometric structures of scenes with fine details,
which is comparable to NeRF2Mesh [49] specially designed
for mesh recovery. Actually, MobileNeRF achieves excellent
rendering results via photometric overfitting to cause the
shape-ambiguous problem explained in Sec. IV-B, leading
to an incorrect geometry. On the contrary, thanks to our
geometric regularization terms, we can produce a smooth mesh
surface consistent with realistic scene geometry. Compared
with the adaptive mesh refinement strategy in NeRF2Mesh
[49] with face decimation and division, ATM-NeRF only
modifies the vertex positions for training efficiency and does
not significantly reduce mesh quality.

For GS-based approaches, it is challenging to extract mesh
from the millions of tiny 3D Gaussians as these Gaussians tend
to be unorganized after optimization. However, the geometric
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TABLE III
RENDERING QUALITY COMPARISON ON THREE DATASETS COMPARED AGAINST METHODS WITH DIFFERENT BAKING REPRESENTATIONS

Method Representation Synthetic 360◦ [1] Forward-facing [59] Mip-NeRF 360 [27]
PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

GS
Based

3D-GS [40] Gaussians 33.20 0.969 0.033 27.58 0.886 0.104 26.40 0.805 0.173
SuGaR [45] Surface mesh - - - 25.98 0.834 0.178 24.40 0.699 0.301

NeLF
Based LightSpeed [39] NeLF 32.23 0.994 0.038 26.50 0.968 0.173 23.09 - -

NeRF
Based

SNeRG [50] Volume 30.38 0.950 0.050 25.63 0.818 0.183 - - -
MobileNeRF [20] Non-surface mesh 30.90 0.947 0.062 25.91 0.825 0.183 23.06 0.527 0.434
NeRF2Mesh [49] Surface mesh 29.76 0.940 0.072 24.75 0.780 0.267 22.36 0.493 0.478

ATM-NeRF Surface mesh 30.89 0.946 0.069 24.97 0.799 0.204 22.94 0.543 0.439

TABLE IV
RENDERING SPEED (FPS) ON VARIOUS DEVICES ON THE THREE TESTING

DATASETS

Dataset Method iPhone XR iPad Macbook Pro Desktop

Synthetic
360◦ [1]

SNeRG [50] 0.0 8
8

0.0 8
8

16.85 1
8

51.57 2
8

MobileNeRF [20] 54.16 32.81 57.67 60.05
NeRF2Mesh [49] 58.15 35.70 58.36 60.19

ATM-NeRF 58.75 36.02 59.41 60.25

Forward-
facing [59]

SNeRG [50] 0.0 8
8

0.0 8
8

0.0 8
8

0.0 8
8

MobileNeRF [20] 36.55 2
8

28.55 2
8

27.08 60.1
NeRF2Mesh [49] 57.25 35.60 50.87 60.3

ATM-NeRF 49.43 31.23 40.03 60.09

Mip-NeRF
360 [27]

SNeRG [50] - - - -
MobileNeRF [20] 40.9 2

3
28.92 2

3
27.27 58.67

NeRF2Mesh [49] 58.33 37.79 51.67 60.32
ATM-NeRF 54.33 36.77 44.33 59.88

mesh is an essential representation for editing, sculpting,
animating, and relighting the scene to support various visual
applications. Few solutions have been proposed so far and
SuGaR [45] is the SOTA one. Fig. 9 shows the qualitative
comparison results of 3D-GS [40], SuGaR [45] and ATM-
NeRF in mesh reconstruction. For comparison, the meshes
of 3D-GS were exported based on its output point clouds by
Poisson reconstruction. It can be seen from Fig. 9 that 3D-GS
produces sparse and fragmented mesh faces and comparably
SuGaR can recover denser mesh surfaces. However, SuGaR’s
meshes still suffer from floaters (lego), rough edges (ship and
bicycle) or lost details (garden). Also, it can be observed from
the zoom-in blocks in the last two rows that SuGaR extracts
more delicate mesh faces, explained for its large memory
storage in Table V.
Mesh Storage. Considering the resource limitation of mobile
devices, we also evaluated the practical applicability by com-
paring the disk storage requirement and the number of vertices
and faces in the exported meshes, as shown in Table V. “#V”
denotes the number of vertices of the exported mesh. The disk
storage contains all products of S2, including the exported
meshes, their texture maps and the JSON file recording the
weights of neural shader Hθ. Instead of the subdivision and
decimation algorithm in the mesh refinement of NeRF2Mesh
[49], our refinement only focuses on vertex positions under
geometric regularizations, leading to the least vertices and
disk storage requirements. As for the Gaussian methods, they
require a large number of 3D Gaussian functions to represent
scenes with complex details, which inevitably take up a lot of
memory storage, and current solutions still focus on memory
saving for Gaussians rather than exported mesh.

We also provided our memory usage for training and volume
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Fig. 8. Surface reconstruction quality compared with NeRF-based
methods on Synthetic 360◦ dataset and Mip-NeRF 360 dataset. Our method
achieves comparable mesh reconstruction quality compared to NeRF2Mesh
by only refining the vertex positions.

rendering during S1 in Table V. From this table, we can
observe that to train the full ATM-NeRF, a GPU with at
least 8G memory is needed for training and volume rendering
before exporting meshes. Taking both memory and processing
capability into consideration, we recommend using GPU above
NVIDIA GeForce RTX 3060, otherwise the training may fail
or take longer time than we reported.

E. Ablation Study

We demonstrated how the introduced geometric regulariza-
tion terms in our framework affect the results by comparing
ATM-NeRF against three variants that exclude either the
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3D-GS SuGaR ATM-NeRF (Ours)RGB

lego

ship

bicycle

garden

Fig. 9. Surface reconstruction quality compared with GS-based methods on Synthetic 360◦ dataset and Mip-NeRF 360 dataset. The mesh reconstruction
results of 3D-GS were generated from Poisson reconstruction based on its output point clouds. SuGaR focuses more on real-world scenes and cannot effectively
deal with scenes without background.

TABLE V
AVERAGE NUMBER OF VERTICES ↓ ( 103) AND MEMORY USAGE ↓ (MB)

OF EXPORTED MESHES

Synthetic 360◦ [1] Forward-facing [59] Mip-NeRF 360 [27]
#V Mem. #V Mem. #V Mem.

GT 614 30.49 - - - -
MobileNeRF [20] 494 126 830 202 1436 345
NeRF2Mesh [49] 200 74 397 125 718 187

3D-GS [40] 289 53 1017 238 4808 1198
SuGaR [45] - - 489 173 1045 384

ATM-NeRF-S1 (volume) - 4185 - 3175 - 3959
ATM-NeRF-S2 (mesh) 131 54 209 120 439 158

* ATM-NeRF-S1 is for presenting the memory usage of training and volume rendering during S1.

density regularization, the position regularization or the feature
regularization, denoted by “w/o LD/LP /LE”, respectively.
Table VI, Table VII and Table VIII provide the quantitative
results of these evaluated variants in terms of the rendering
quality and the training speed on the Synthetic 360◦ dataset
[1], the Forward-facing dataset [59] and the Mip-NeRF 360
dataset [27], respectively. For more intuitive observation, we
offer the validation PSNR during training on typical scenes
from three tested datasets in Fig. 10. It can be observed
from the above quantitative results that LD,LP ,LE all play

an important role in improving rendering performance in
their stage, especially for S2. The underlying reason is that
such geometric constraints are of great benefit in recovering
reasonable scene geometry, based on which the rasterization
points for rendering can be more accurate and consistent
with perception. What’s more, LP and LE encourage fast
convergence of the training model in the bottleneck stage
S2 via their direct point-to-point supervision on the vertex
position and the geometric feature respectively. Besides, Fig.
11 gives the rendering results of variants “w/o LP ”, “w/o
LE” and our ATM-NeRF in S2. By observing Fig. 11, we
can conclude that both loss terms are of great assistance in
synthesizing a remarkable rendering image with photorealistic
details. Furthermore, LP brings more improvement than LE

since it directly guides the vertex position optimization to
determine the mesh geometry.

All the above quantitative results corroborate our claim that
our full ATM-NeRF achieves the best rendering quality while
using the least training iterations, demonstrating the effective-
ness of our designed regularization constraints LD,LP ,LE in
improving both rendering quality and training efficiency.
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TABLE VI
ABLATION STUDY– RENDERING QUALITY AND THE NUMBER OF TRAINING

EPOCHS FOR DIFFERENT VARIANTS TO CONVERGE ON THE SYNTHETIC
360◦ DATASET [1]

Stage Variants PSNR SSIM LPIPS epoch

Pre-training w/o LD 30.88 0.951 0.079 300
ATM-NeRF (S1) 31.87 0.956 0.061 300

Baking
w/o LP 30.65 0.931 0.070 300
w/o LE 30.76 0.938 0.079 240

ATM-NeRF (S2) 30.89 0.946 0.069 180

TABLE VII
ABLATION STUDY– RENDERING QUALITY AND THE NUMBER OF TRAINING

EPOCHS FOR DIFFERENT VARIANTS TO CONVERGE ON THE
FORWARD-FACING DATASET [59]

Stage Variants PSNR SSIM LPIPS epoch

Pre-training w/o LD 26.42 0.824 0.218 1200
ATM-NeRF (S1) 26.97 0.839 0.204 1200

Baking
w/o LP 22.91 0.680 0.201 500
w/o LE 23.56 0.681 0.289 500

ATM-NeRF (S2) 24.97 0.799 0.204 350

F. Discussion

Rendering Quality on the Foward-facing Dataset. It can be
observed from Table III that our ATM-NeRF underperforms
MobileNeRF especially on the Forward-facing dataset. We
found that the main reason lies in the grid resolution used in S1
to generate the rasterized mesh, which will be further refined
in S2. To demonstrate this, we provided experimental results
configured with different resolution values on this dataset in
Table IX. “-r” denotes different resolution values. “†” denotes
the configuration we used in this paper. As mentioned in Sec.
IV-B, we empirically used 128 (Gs1 ) as the mesh resolution
for the sake of training efficiency.

As demonstrated in Table IX, the resolution we chose is not
delicate enough to represent the challenging Forward-facing
dataset without 360◦ view coverage, leading to a decrease in
the rendering quality. However, a finer resolution can bring
an increase to rendering quality but also to the disk storage
requirement and training time. Considering that our goal is
to accelerate training, we expected the exported mesh to be
as lightweight as possible to reduce the optimization time
of mesh vertices. Also, a low-resolution mesh takes up less
disk storage, which is more friendly to resource-constrained
mobile devices. From the perspective of mobile rendering, we
prefer 128 as the resolution to lay more emphasis on time
efficiency and memory efficiency, and we believe the loss in
rendering quality is acceptable. In practice, users can modify
the resolution based on their needs.
Summary. On the one hand, although MobileNeRF [20] and
GS-based schemes [40], [45] demonstrate excellent perfor-
mance in rendering quality, they take mesh geometry as a
sacrifice, which not only hinders their support for various
downstream tasks but also contributes to larger disk storage
requirements. As a result, MobileNeRF owns the lowest ren-
dering frame rate and even fails to render some large-scale
outdoor scenes from Mip-NeRF 360 [27] on our testing iPhone
XR due to the out-of-memory errors. Also, MobileNeRF and
SuGaR suffer from lengthy training time for mesh exportation.

TABLE VIII
ABLATION STUDY– RENDERING QUALITY AND THE NUMBER OF TRAINING

EPOCHS FOR DIFFERENT VARIANTS TO CONVERGE ON THE MIP-NERF
360 DATASET [27]

Stage Variants PSNR SSIM LPIPS epoch

Pre-training w/o LD 22.33 0.538 0.481 180
ATM-NeRF (S1) 22.54 0.545 0.497 180

Baking
w/o LP 22.03 0.526 0.468 120
w/o LE 21.54 0.512 0.474 100

ATM-NeRF (S2) 22.94 0.543 0.439 70

t t

t t

t t

Fig. 10. Ablation study– validation PSNR during two training stages
compared with all variants on typical scenes from the Synthetic 360◦ dataset,
the Forward-facing dataset and the Mip-NeRF 360 dataset, respectively.

On the other hand, NeRF2Mesh [49] performs well in
restoring geometric details of the scene and also achieves
brilliant rendering speed thanks to its adaptive mesh refinement
algorithm. However, this heuristic refinement algorithm brings
instability to training, leaving room for improvement in train-
ing efficiency. In addition, it sacrifices rendering quality for
the sake of geometric structure, resulting in noticeable white
noise and blurring in the rendering results.

Compared with the above methods, ATM-NeRF is compa-
rable to the SOTA NeRF methods in terms of the rendering
quality and the mesh quality. Besides, ATM-NeRF costs the
least disk storage due to our effective mesh refinement strategy
on vertices, reducing the computational power requirement
for the rendering hardware and ensuring a rendering speed at
about 30 ∼ 60 FPS on iPhone XR. The most important thing
to emphasize is that owing to our regularization constraints
to guide the continuous gradient updates for mesh refinement,
ATM-NeRF hold an overwhelming advantage in training speed
which is 30 ∼ 70× faster than MobileNeRF [20], about 2×
faster than NeRF2Mesh [49] and 4 ∼ 5× faster than SuGaR
[45]. Taking all factors into account, our ATM-NeRF is the
best candidate for mobile NeRF rendering.
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GT w/o w/o ATM-NeRFRGB

Fig. 11. Ablation – rendering performance in S2 of different variants on
the typical scenes from the Synthetic 360◦ dataset, the Forward-facing dataset
and the Mip-NeRF 360 dataset, respectively.

TABLE IX
COMPARISON OF ATM-NERF WITH DIFFERENT RESOLUTION

CONFIGURATIONS ON PSNR↑, DISK STORAGE REQUIREMENT↓ (MB) AND
TRAINING TIME↓ (MINS) ON THE FORWARD-FACING DATASET

Methods PSNR Disk Training Time
MobileNeRF [20] 25.91 201.50 857.5
ATM-NeRF-r128† 24.97 120.30 29.60
ATM-NeRF-r192 25.38 136.34 58.54
ATM-NeRF-r256 25.77 158.91 91.37

VI. CONCLUSION

In summary, we presented ATM-NeRF, the first work to
employ geometric constraints as regularizations to accelerate
training for NeRF rendering on mobile devices. In the first pre-
training stage, we enhance the rendering quality and achieve
smoother meshes by enforcing stable density grids with mul-
tiple resolutions. In the second stage, the projected points
synthesized from posed depths generated from pre-training
are fully utilized, whose positions and geometric features are
of great use in training convergence. As a result, our work
achieves comparable rendering quality with MobileNeRF [20],
approximately 70× faster on the Synthetic 360◦ dataset, and
around 50× faster on real-world Mip-NeRF 360 scenes. In
addition, we also maintain a satisfactory mesh with a deli-
cate geometric structure to support zoom-in/out operation for
mobile applications. What’s more, we keep a faster rendering
speed than MobileNeRF [20] due to surfaced meshes and low
disk storage. Although ATM-NeRF has demonstrated excellent
performance in training speed and rendering quality, there are
still two limitations of the current work that can be improved.
First, we may have a problem with mesh relighting since our
specular model records the illumination of the training set
and fails to generalize to unknown illumination environments
without re-training. Second, the training speed and rendering
quality of ATM-NeRF are still expected to be improved when
dealing with the input from limited views such as the Forward-
facing dataset. In our future work, we will continue to devote

our efforts to improving the generation ability of ATM-NeRF
and to mobile rendering with sparse input even from a single
view.

REFERENCES

[1] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi,
and R. Ng, “NeRF: Representing scenes as neural radiance fields for
view synthesis,” in Proc. Eur. Conf. Comput. Vis., 2020, pp. 405-421.

[2] P. Ndjiki-Nya, M. Koppel, D. Doshkov, H. Lakshman, P. Merkle, K.
Muller, and T. Wiegand, “Depth image-based rendering with advanced
texture synthesis for 3-D video,” IEEE Trans. Multimedia, vol. 13, no.
3, pp. 453-465, 2011.

[3] B. Cao, H. Cao, J. Liu, P. Zhu, C. Zhang, and Q. Hu, “Autoencoder-
based collaborative attention GAN for multi-modal image synthesis,”
IEEE Trans. Multimedia, vol. 26, pp. 995-1010, 2024.

[4] Z. Liu, W. Jia, M. Yang, P. Luo, Y. Guo, and M. Tan, “Deep view syn-
thesis via self-consistent generative network,” IEEE Trans. Multimedia,
vol. 24, pp. 451-465, 2022.

[5] K. Deng, A. Liu, J. Y. Zhu, and D. Ramanan, “Depth-supervised NeRF:
Fewer views and faster training for free,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2022, pp. 12872-12881.

[6] C. Sun, M. Sun, and H. T. Chen, “Direct voxel grid optimization: Super-
fast convergence for radiance fields reconstruction,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2022, pp. 5449-5459.

[7] T. Müller, A. Evans, and C. S. Keller, “Instant neural graphics primitives
with a multiresolution hash encoding,” ACM Trans. Graph., vol. 41, no.
4, pp.1-15, 2022.

[8] S. Fridovich-Keil, A. Yu, M. Tancik, Q. Chen, B. Recht, and A.
Kanazawa, “Plenoxels: Radiance fields without neural networks,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2022, pp. 5491-5500.

[9] A. Chen, Z. Xu, A. Geiger, J. Yu, and H. Su, “TensoRF: Tensorial
radiance fields,” in Proc. Eur. Conf. Comput. Vis., 2022, pp. 333-350.

[10] L. Yariv, P. Hedman, C. Reiser, D. Verbin, P. P. Srinivasan, R. Szeliski,
J. T. Barron, and B. Mildenhall, “BakedSDF: Meshing neural SDFs for
real-time view synthesis,” ACM Trans. Graph., vol. 46, pp. 1-9, 2023.

[11] L. Liu, J. Gu, K. Z. Lin, T. Chua, and C. Theobalt, “Neural sparse voxel
fields,” Adv. Neural Inf. Process. Syst., vol. 33, pp. 15651-15663, 2020.

[12] D. B. Lindell, J. N. P. Martel, and G. Wetzstein, “AutoInt: Automatic
integration for fast neural volume rendering,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2021, pp. 14551-14560.

[13] D. Rebain, W. Jiang, S. Yazdani, K. Li, K. M. Yi, and A. Tagliasacchi,
“DeRF: Decomposed radiance fields,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2021, pp. 14148-14156.

[14] T. Neff, P. Stadlbauer, M. Parger, A. Kurz, J. H. Mueller, C. R. A.
Chaitanya, A. Kaplanyan, and M. Steinberger, “DoNeRF: Towards real-
time rendering of compact neural radiance fields using depth oracle
networks,” Comput. Graph. Forum, vol. 40, no. 4, pp. 45-59, 2021.

[15] S. J. Garbin, M. Kowalski, M. Johnson, J. Shotton, and J. Valentin,
“FastNeRF: High-fidelity neural rendering at 200FPS,” in Proc. IEEE
Int. Conf. Comput. Vis., 2021, pp. 14326-14335.

[16] C. Reiser, S. Peng, Y. Liao, and A. Geiger, “KiloNeRF: Speeding up
neural radiance fields with thousands of tiny MLPs, ” in Proc. IEEE Int.
Conf. Comput. Vis., 2021, pp. 14315–14325.

[17] V. Sitzmann, S. Rezchikov, B. Freeman, J. Tenenbaum, and F. Du-
rand, “Light field networks: Neural scene representations with single-
evaluation rendering, ” Adv. Neural Inf. Process. Syst., vol. 34, pp.
19313-19325, 2021.

[18] A. Yu, R. Li, M. Tancik, H. Li, R. Ng, and A. Kanazawa, “PlenOctrees
for real-time rendering of neural radiance fields,” in Proc. IEEE Int.
Conf. Comput. Vis., 2021, pp. 5732-5741.

[19] H. Wang, J. Ren, Z. Huang, K. Olszewski, M. Chai, Y. Fu, and S.
Tulyakov, “R2L: Distilling neural radiance field to neural light field for
efficient novel view synthesis, ” in Proc. Eur. Conf. Comput. Vis., 2022,
pp. 612-629.

[20] Z. Chen, T. Funkhouser, P. Hedman, and A. Tagliasacchi, “MobileNeRF:
Exploiting the polygon rasterization pipeline for efficient neural field
rendering on mobile architectures,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2023, pp. 16569-16578.

[21] J. Cao, H. Wang, P. Chemerysa, V. Shakhrai, J. Hu, Y. Fu, D. Makovi-
ichuk, S. Tulyakov, and J. Ren, “Real-time neural light field on mobile
devices, ” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2023,
pp. 8328-8337.
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