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Estimating the relative pose between a camera and a LiDAR holds paramount importance in facilitating com-
plex task execution within multi-agent systems. Nonetheless, current methodologies encounter two primary
limitations. First, amid the cross-modal feature extraction, they typically employ separate modal branches
to extract cross-modal features from images and point clouds. This approach results in the feature spaces of
images and point clouds being misaligned, thereby reducing the robustness of establishing correspondences.
Second, due to the scale differences between images and point clouds, one-to-many pixel-point correspon-
dences are inevitably encountered, which will mislead the pose optimization. To address these challenges, we
propose a framework named I2Pppsim (Image to Point cloud registration by learning the underlying align-
ment feature space fromPixel-to-Point SIMilarities). Central to I2Pppsim is a shared feature alignmentmodule
(SFAM). It is designed under on a coarse-to-fine architecture and uses a weight-sharing network to construct
an alignment feature space. Benefiting from SFAM, I2Pppsim can effectively identify the co-view regions be-
tween images and point clouds and establish high-reliability 2D-3D correspondences. Moreover, to mitigate
the one-to-many correspondence issue, we introduce a similarity maximization strategy termed point-max.
This strategy effectively filters out outliers, thereby establishing accurate 2D-3D correspondences. To evaluate
the efficacy of our framework, we conduct extensive experiments on KITTI Odometry and Oxford Robotcar.
The results corroborate the effectiveness of our framework in improving image-to-point cloud registration.
To make our results reproducible, the source codes have been released at https://cslinzhang.github.io/I2P.
CCS Concepts: • Computing methodologies→ Vision for robotics.
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Fig. 1. General pipeline of image-to-point cloud (I2P) registration. I2P registration first extracts the common
features and then conducts the feature matching to build the 2D-3D correspondences. After that, a PnP
solver is used to estimate the relative pose.

Image-to-point cloud (I2P) registration refers to estimating the relative pose between a LiDAR
and a camera via their measurements (point clouds and images), where the image and the point
cloud are captured from the same scene. This task is widely used in many robotics and computer
vision applications, such as SLAM (Simultaneous Localization and Mapping), robot navigation,
and scene understanding [16, 18, 31, 42, 52].

The key to I2P registration is feature matching between images and point clouds. Unlike the
widely studied homologous registration (image-to-image registration [4, 5, 47, 51], point cloud-to-
point cloud registration [7, 46, 50]), image-to-point cloud registration is limited exploration due to
the challenging modality differences between images and point clouds.

As shown in Fig. 1, the pipeline of I2P involves feature extraction, feature matching, correspon-
dence establishment, and pose estimation. Previous studies relied on complex cross-modal manual
feature designs or time-consuming optimization algorithms [10, 23], overlooking the differences
between images and point clouds in feature space, perceptual range, and scale. Therefore, the
performance of these studies is unsatisfactory. Specifically, to improve the performance of I2P
registration, there are still three challenges to be faced with:

1) Misalignment feature space. Existing methods utilize separate modal branches to extract
cross-modal features from images and point clouds [10], which poses a challenge in fea-
ture matching. Specifically, as different modalities of data, images and point clouds have
significant differences in data structure and information content. Due to the use of different
modal branches, current approaches cannot effectively alleviate such modal differences, but
instead lead to feature space misalignment. This misalignment in the feature space reduces
the performance of feature matching.

2) Insufficient feature fusion. The current single-stage feature fusion scheme fails to meet
the different requirements of feature receptive fields for image-point cloud feature matching
[23, 30]. Generally, cross-modal features with global receptive fields are suitable for detecting
co-view regions between images and point clouds, while those with local receptive fields
are suitable for predicting pixel-point matches. Therefore, it is of necessity to extract cross-
modal features with different receptive fields for co-view region detection and matching
pixel-point prediction. Unfortunately, current methods lack this capability.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: April 2024.



I2P Registration by Learning the Underlying Alignment Feature Space from Pixel-to-Point Similarities 1:3

3) Matching ambiguity.The one-to-many correspondence problem caused by the scale differ-
ence between images and point clouds misleads pose optimization. For example, taking the
camera center as the origin, as the perception distance gets farther, for one pixel, there are
usually multiple points within the frustum. Moreover, the Euclidean distance among those
points may vary greatly. These seemingly “correct” one-to-many correspondences can mis-
lead the pose optimization.

To deal with the aforementioned challenges, we propose a novel I2P registration framework,
called I2Pppsim (Image to Point cloud registration by learning the underlying alignment feature
space from Pixel-to-Point SIMilarities). I2Pppsim learns the underlying feature alignment space
between images and point clouds via a shared feature alignment module (SFAM), and designs
a matching constraint called point-max based on feature similarity to alleviate the one-to-many
correspondence dilemma. The characteristics of I2Pppsim and our contributions are as follows:

1) The first feature space alignment-based image-to-point cloud (I2P) registration framework is
proposed, named I2Pppsim. It mines pixel-point similarities by learning aligned cross-modal
feature spaces. Based on the cross-modal representation, co-view regions are detected and
pixel-point correspondences are directly predicted. Extensive experiments demonstrate that
our I2Pppsim achieves state-of-the-art (SOTA).

2) A novel Shared Feature AlignmentModule (SFAM) is designed. Benefiting from the coarse-
to-fine architecture, SFAM can extract coarse-grained features focusing on global expression
and fine-grained features focusing on local expression. The former is helpful for co-view
region detection and the latter is suitable for pixel-point matching estimation. In addition,
SFAM uses a weight-sharing network to construct an aligned cross-modal feature space,
which effectively alleviates the modality difference.

3) A plug-and-play matching strategy named point-max is introduced to solve the one-to-
many correspondences. It does not rely on the feature learning ability of the network and
aims to identify the best matching point for each pixel in the co-view region. By using point-
max, a significant improvement in registration accuracy is achieved. Moreover, point-max
can be seamlessly integrated as a plug-and-play module for other I2P registration methods,
thereby improving their performance.

2 RELATEDWORK
2.1 Image Registration
Image registration is usually treated as a pre-processing step for applications such as Structure
from Motion (SfM) and image stitching [13, 20, 29]. The key to registration is to establish an ac-
curate image matching in the R2 space. Current studies on image matching can be divided into
two categories: feature-based ones and matching-based ones. The typical pipeline of the former
is to extract the feature descriptors of the image [24], then calculate the distance between those
descriptors, and determine the matching feature pairs. Recent approaches expect to obtain better
visual feature descriptions through Convolutional Neural Networks (CNNs)[4, 5, 8], and further
improve the correct rate and number of matching pairs.

Most feature-based methods determine the matching pairs through the neighbor search among
features[9], while the matching-based ones no longer focus on the extraction of image features,
but model the image matching as a learning problem. For example, SuperGlue[32] uses attention
to aggregate the global and local features, formulates the image matching problem as a graph
matching problem, and determines the matching pairs by approximately linear distribution. Fur-
thermore, LoFTR[34] completely abandons the learning of image features and directly predicts
dense pixel-by-pixel matches in an end-to-end manner.
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2.2 Point Cloud Registration
Point cloud registration (PCR) methods can be broadly categorized into two groups. The first cate-
gory is characterized by its emphasis on the extraction of point cloud features, aiming to establish
correspondences mainly based on feature matching [1, 15, 28, 33, 36–40, 44, 49]. These methods
primarily rely on the feature extraction capabilities of neural networks. Early studies mainly use
PointNet [3] to extract point clouds’ global descriptors and optimize the network by minimizing
distances between global descriptors [1, 33]. Recently, some approaches replaced PointNet with
transformer [35]. Benefiting from the expanded receptive fields and enhanced contextual associ-
ation capabilities brought by the transformer, these methods achieved impressive performance
[28, 36].

The above-mentioned PCR methods are sensitive to noise, and another category of methods
introduces additional geometric or optimization constraints to enhance the robustness of PCR
[2, 6, 11, 41, 45, 48]. PointDSC [2] introduces spatial consistency to eliminate inaccurate matching
pairs. RGM [11] uses deep map matching to implement PCR. MAC [48] searches for the maximum
clique subsets among the matching pairs and selects the optimal transformation guided by the
reprojection error.

2.3 Image-to-Point Cloud Registration
Compared with image registration and point cloud registration, there are few studies on I2P reg-
istration. According to the ways of correspondence establishment, these I2P methods are mainly
categorized into two classes: keypoint-based methods and keypoint-free ones. The core idea of the
keypoint-based methods is to measure the distance and establish correspondences based on the
keypoint descriptors extracted from images and point clouds [10].

In order to avoid complex cross-modal keypoint design, keypoint-free methods aim to learn
point/pixel-wise features with strong repetitiveness [17, 19, 23, 30, 43]. DeepI2P [23] utilizes cross-
attention to fuse the features of images and point clouds and proposes inverse camera projection
for relative pose estimation. Building upon DeepI2P, CorrI2P establishes 2D-3D correspondences
based on feature similarity metrics [30]. Similar to CorrI2P, EP2P-Loc achieves visual localization
using images and point cloud submaps as inputs [19].

Although keypoint-free methods improve registration performance, they overlook the one-to-
many correspondence dilemma caused by scale ambiguity. Furthermore, these methods extract
features from images and point clouds through different modal branches, indicating that the fea-
ture spaces of images and point clouds are not aligned. The misalignment of feature spaces further
reduces the repeatability of cross-modal features.

3 METHODOLOGY
3.1 Problem Definition and Framework Overview
Given an image I ∈ R3×𝑊 ×𝐻 (𝑊 and 𝐻 represent the width and height of the image) and a
point cloud P = {𝑷1, 𝑷2, ..., 𝑷𝑵 ∈ R3} (𝑁 is the number of points), the task of I2P registration
is to estimate the relative rigid transformation 𝑻 = [𝑹 |𝒕] ∈ 𝑺𝑬 (3) (𝑹 ∈ 𝑺𝑶 (3), 𝒕 ∈ R3) from
the LiDAR frame to the camera frame. Generally, a standard registration problem is modeled as
a PnP (Perspective-n-Point) or ICP (Iterative Closest Point) problem. However, the point cloud
collected by LiDAR has little geometric and appearance similarity with the RGB image. Also, to
establish the correspondences among pixels and points is non-trivial. We expect to represent the
two kinds of data in a higher-dimensional feature space through information fusion, build 2D-
3D correspondences, and then regard I2P registration as a PnP problem. To this end, I2Pppsim is
designed to comprise two parts: a correlation map estimation module and a pose estimator (as
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Fig. 2. Overview of I2Pppsim. I2Pppsim is composed of fivemodules: Feature Extractor, SFAM,CVD, Point-max,
and PnP Solver. Firstly, the high-dimensional features of images and point clouds are separately extracted by
the two branches of Feature Extractor. Such features are then fed into SFAM to obtain cross-modal features
in a coarse-to-fine architecture. With the coarse-grained features from SFAM, the co-view region of the
image and point cloud is determined by CVD. Further, based on the fine-grained features from SFAM and
the outputs of CVD, a correlation map is predicted, where 2D-3D correspondences are selected by Point-max.
At last, the relative pose of the LiDAR to the camera is estimated via the PnP solver.

shown in Fig. 2). In I2Pppsim, Feature Extractor, Shared Feature Alignment Module (SFAM), and
Co-View Detector (CVD) are used to estimate the correlation map. When performing inference,
given a pair of I and P, the image and point cloud are first mapped to the high-dimensional
space by Feature Extractor, and then SFAM is used to perform feature fusion and feature space
alignment. Subsequently, the pixel-point correlation map is calculated based on the aligned cross-
modal features in the co-view region and is further fed into the pose estimator. Based on our
point-max strategy, we select matching candidates obtained from the correlation map. In this way,
the 2D-3D correspondences can be established. Finally, EPnP [21] and RANSAC are employed to
iteratively optimize the pose.

3.2 Feature Extractor
In view of the inherent dissimilarities in the properties of images and point clouds, employing the
same feature extraction network to process both of them is impractical. Inspired by DeepI2P, we
resort to ResNet [14] to encode the image features, while a modified PointNet++ [22, 27] serves as
the feature encoder for the point cloud. Through these feature encoders, the multi-scale features
of images and point clouds can be obtained, expressed as 𝑭 𝑖

𝐼 ∈ R𝑐𝑖×𝑊𝑖×𝐻𝑖 , 𝑖 ∈ {1, 2, 3, 4}, and
𝑭 𝑗
𝑃 ∈ R𝑐 𝑗×𝑁 𝑗 , 𝑗 ∈ {1, 2, 3}, respectively, where 𝑐𝑖/𝑐 𝑗 denotes the 𝑖-th/ 𝑗-th features. Then, the global

descriptions of the scene from images and point clouds can be obtained by performingmax pooling,
which are denoted by 𝑭 (𝑔,𝐼 ) ∈ R𝑐𝐼 and 𝑭 (𝑔,𝑃 ) ∈ R𝑐𝑃 , where 𝑐𝐼/𝑐𝑃 is the dimension of image/point
cloud global feature vector. We posit that taking into account both local and global features is
more conducive to enhancing the ability of feature representation. Consequently, images and point
clouds of various scales are employed for subsequent feature fusion.

3.3 Shared Feature Alignment Module
SFAM utilizes multi-scale features 𝑭 𝑖

𝐼 and 𝑭
𝑗
𝑃 as inputs and generates per-pixel and per-point cross-

modal features 𝑭 (𝑓 𝑖𝑛𝑒,𝐼 ) and 𝑭 (𝑓 𝑖𝑛𝑒,𝑃 ) . Considering that forcibly aligning the visual-laser feature
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Fig. 3. Overall architecture of SFAM. SFAM fuses image and point cloud features in a coarse-to-fine manner.
In the coarse fusion stage, symmetric cross-attention is leveraged to fuse multi-scale image and point cloud
features. In the fine-grained fusion stage, fine-grained features 𝑭 (𝑓 𝑖𝑛𝑒,𝑃 ) and 𝑭 (𝑓 𝑖𝑛𝑒,𝐼 ) are extracted by a
weight-sharing network 𝑓𝑎𝑙𝑖𝑔𝑛 . In addition, coarse-grained features 𝑭 (𝑐𝑜𝑎𝑟𝑠𝑒,𝑃 ) and 𝑭 (𝑐𝑜𝑎𝑟𝑠𝑒,𝐼 ) are used as
inputs of the co-view detectors (CVD), where CVDI is the image co-view detector and CVDP is the point
cloud co-view detector.

spaces is rude and meaningless, SFAM is designed as a coarse-to-fine architecture, employing a
two-stage approach to extract common features, as illustrated in Fig. 3.

In the coarse fusion stage, we concatenate the global features of the image (𝑭 (𝑔,𝐼 ) ) and point
cloud (𝑭 (𝑔,𝑃 ) ) with multi-scale point cloud features ({𝑭 𝑗

𝑃 } 𝑗=1,2) and image features ({𝑭 𝑖
𝐼 }𝑖=3,4), re-

spectively. Next, fused features at different scales are obtained via symmetrical cross-attention (
𝑓𝑎𝑡𝑡𝐼 : R

𝑐×𝑊 ×𝐻 → R𝑐×𝑊 ×𝐻 and 𝑓𝑎𝑡𝑡𝑃 : R𝑐×𝑁 → R𝑐×𝑁 ),

𝒇 ′
(𝑐𝑜𝑎𝑟𝑠𝑒,𝐼 ) = 𝑓𝑎𝑡𝑡𝐼 (𝑭 (𝑔,𝑃 ) , 𝑭 4

𝐼 , 𝑭
2
𝑃 , 𝑭 (𝑔,𝐼 ) ),

𝒇 ′
(𝑐𝑜𝑎𝑟𝑠𝑒,𝑃 ) = 𝑓𝑎𝑡𝑡𝑃 (𝑭 (𝑔,𝑃 ) , 𝑭 4

𝐼 , 𝑭
2
𝑃 , 𝑭 (𝑔,𝐼 ) ),

(1)

where 𝒇 ′
(𝑐𝑜𝑎𝑟𝑠𝑒,𝐼 ) and 𝒇

′
(𝑐𝑜𝑎𝑟𝑠𝑒,𝑃 ) are the fused features of the image and the point cloud respectively.

Similarly, by replacing 𝑭 4
𝐼 and 𝑭 2

𝑃 in Eq. 2 with 𝑭 3
𝐼 and 𝑭 1

𝑃 , fused features of another scale can be
obtained, which are indicated as 𝒇 ′′

(𝑐𝑜𝑎𝑟𝑠𝑒,𝐼 ) and 𝒇 ′′
(𝑐𝑜𝑎𝑟𝑠𝑒,𝑃 ) . Then the fused features from different

scales are concatenated, and the feature encoding functions are used to further extract coarse-
grained features 𝒇(𝑐𝑜𝑎𝑟𝑠𝑒,𝐼 ) and 𝒇(𝑐𝑜𝑎𝑟𝑠𝑒,𝑃 ) ,

𝒇(𝑐𝑜𝑎𝑟𝑠𝑒,𝐼 ) = 𝐶𝑁𝑁 (𝒇 ′
(𝑐𝑜𝑎𝑟𝑠𝑒,𝐼 ) ,𝒇

′′
(𝑐𝑜𝑎𝑟𝑠𝑒,𝐼 ) ),

𝒇(𝑐𝑜𝑎𝑟𝑠𝑒,𝑃 ) = 𝑀𝐿𝑃 (𝒇 ′
(𝑐𝑜𝑎𝑟𝑠𝑒,𝑃 ) ,𝒇

′′
(𝑐𝑜𝑎𝑟𝑠𝑒,𝑃 ) ).

(2)

Coarse-grained features focus more on global information and provide a broader perspective of the
correspondence between the two modalities. In I2Pppsim, they are regarded as the input of co-view
detectors.

In the fine fusion stage, an aligned feature space is constructed to mine the consistent features
of both images and point clouds. Considering that CNN is difficult to handle unordered point cloud
features, while unordered network structures still have the ability to handle ordered features, we
resort to a variant of pointnet [23] to construct a weight-sharing network to model the feature
space. With 𝒇(𝑐𝑜𝑎𝑟𝑠𝑒,𝐼 ) and 𝒇(𝑐𝑜𝑎𝑟𝑠𝑒,𝑃 ) as the network inputs, the fine-grained features 𝒇(𝑓 𝑖𝑛𝑒,𝐼 ) and
𝒇(𝑓 𝑖𝑛𝑒,𝑃 ) are obtained by,

𝒇(𝑓 𝑖𝑛𝑒,𝑃 ) = 𝑓𝑎𝑙𝑖𝑔𝑛 (𝒇(𝑐𝑜𝑎𝑟𝑠𝑒,𝑃 ) ),
𝒇(𝑓 𝑖𝑛𝑒,𝐼 ) = 𝑓𝑎𝑙𝑖𝑔𝑛 (𝒇(𝑐𝑜𝑎𝑟𝑠𝑒,𝐼 ) ),

(3)
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Fig. 4. Comparison of cross-modal features extracted by different feature fusion schemes. The co-view re-
gions are marked, the warmer the feature, the higher the probability of a match.

where 𝑓𝑎𝑙𝑖𝑔𝑛 : R𝑐×(𝑊 ×𝐻 ) → R𝑐×(𝑊 ×𝐻 ) for images and R𝑐×𝑁 → R𝑐×𝑁 for point clouds. These
features focus on local similarity, enabling SFAM to capture delicate correspondences among pix-
els and points. After acquiring the fine-grained features, we expect to measure the similarity
among them to build correspondences. With 𝒇(𝑓 𝑖𝑛𝑒,𝐼 ) , 𝒇(𝑓 𝑖𝑛𝑒,𝑃 ) , we can calculate the correlation
map 𝑴𝒂𝒑𝑐𝑜𝑟 ∈ R(𝑊 ×𝐻 )×𝑁 between the image and the point cloud by,

𝑴𝒂𝒑𝑐𝑜𝑟 = 𝒇𝑇(𝑓 𝑖𝑛𝑒,𝐼 )𝒇(𝑓 𝑖𝑛𝑒,𝑃 ) . (4)

𝑴𝒂𝒑𝑐𝑜𝑟 reflects the similarity of visual-laser data, which enables I2Pppsim to learn the feature
matching process. We optimize SFAM by minimizing the similarity loss of 𝑴𝒂𝒑𝑐𝑜𝑟 . The specific
loss function design and analysis will be presented in Sec. 3.6.
The motivation behind the weight-sharing network. Existing feature fusion scheme for

I2P registration extracts cross-modal features of images and point clouds through different modal
branches. This results in these cross-modal descriptions being in different feature spaces, which in
turn hinders the prediction of 2D-3D correspondences. To address this issue, we design a weight-
sharing network in SFAM. By utilizing this network, features from different modal branches are
mapped to the same aligned feature space, which assists feature matching.

The advantages of SFAM. Compared to other methods, our SFAM takes into account both
global and local information, which enables I2Pppsim to better focus on semantic objects in the
scene (such as cars, houses, etc.). Moreover, while other methods use separate modal branches
to extract cross-modal features from images and point clouds, SFAM employs a weight-sharing
network to directly construct an aligned feature space. As a result, the cross-modal features of
images and point clouds are mapped to the same feature space, which enhances the reliability of
feature similarity. Fig. 4 illustrates the similarities of cross-modal features extracted by different
methods. It can be seen that our I2Pppsim outperforms the others.

3.4 Co-View Detector
The number of pixels or points in an image or point cloud typically ranges from thousands to tens
of thousands. In the case where the number of pixels is 𝑀 and the number of points is 𝑁 , the
size of the correlation map would be 𝑀 × 𝑁 . The computation and storage requirements for such
a large-scale correlation map are substantial. However, in I2P registration, the associated data is
typically concentrated in a fan-shaped area, occupying only a small portion of the image and point
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One-to-many  correspondences Point-max

Pixel

Points feature vector 

Pixel feature vector

Points 

Feature prediction

Pixel

Points

Maximize

Fig. 5. The phenomenon of one-to-many correspondences between a pixel 𝒑𝒊 and multiple points 𝑷1, · · · , 𝑷𝑘 .
Point-max is designed to eliminate those outliers.

cloud. Leveraging this characteristic, Co-View Detectors (CVD) for images and point clouds are
designed to determine whether a pixel or point belongs to the co-view region, they are denoted
by CVDI and CVDP respectively.

During the calculation of the correlation map, only the pixels and points in the co-view region
are considered. In this way, the data scale of the correlation map is significantly reduced, leading
to accelerated network inference. To accomplish co-view region detection, we treat it as a binary
classification problem. We employ two classification heads to analyze the coarse-grained features
𝒇(𝑐𝑜𝑎𝑟𝑠𝑒,𝐼 ) and 𝒇(𝑐𝑜𝑎𝑟𝑠𝑒,𝑃 ) separately. The outputs of the CVD correspond to the co-view scores for
each pixel or point, indicating their likelihood of belonging to the co-view region.

3.5 Pose Estimation
Following the network prediction, notable dissimilarities are expected to exist between thematched
and unmatched pixel-point pairs within the correlation map 𝑴𝒂𝒑𝑐𝑜𝑟 . With this in mind, one intu-
itive approach is to employ threshold screening to determine the correspondences between pixels
and points. Alternatively, somemethods establish 2D-3D associations by employing a classification-
based approach. These methods aim to achieve the closest possible one-to-one correspondence be-
tween points and pixels. However, in practice, due to the different sensor measurement manners,
the matching between point and pixel is not strictly one-to-one correspondence. As shown in Fig.
5, in the reprojection of the point cloud, each pixel in the image corresponds to a frustum in the
real world, and multiple points are distributed in the frustum. So, one pixel in the image often
has high similarity with multiple points. Furthermore, as the image downscaling and visual depth
increase, the adverse impact caused by one-to-many correspondences will become more serious.
Those seemingly “correct” correspondences indeed do harm to the calculation of reprojection er-
rors in pose optimization. For example, four adjacent pixels [𝑢𝑖 , 𝑣𝑖 ]𝑇 , 𝑖 ∈ {1, 2, 3, 4} are downscaled
to one pixel [𝑢𝑠 , 𝑣𝑠 ]𝑇 , which corresponds to 𝑘 points 𝑷1, · · · , 𝑷𝑘 , where 𝑷 𝑗 = [𝑥 𝑗 , 𝑦 𝑗 , 𝑧 𝑗 ]𝑇 , 𝑗 = 1 ∼ 𝑘 .
Before downscaling, for each pixel [𝑢𝑖 , 𝑣𝑖 ]𝑇 and itsmatching points {𝑷𝑐 = [𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐 ]𝑇 : |𝑐 = 1 ∼ 𝑘𝑖 }
(where 𝑘𝑖 is the number of matching points for [𝑢𝑖 , 𝑣𝑖 ]𝑇 ), the reprojection error is,

𝑒 =
∑
𝑖

𝑒𝑖 =
∑
𝑖

∑
𝑐

∥
[
𝑢𝑖
𝑣𝑖

]
− 𝜋 ( 1

𝑧𝑐
𝑲𝑻𝑷𝑐 )∥2, (5)

where 𝑲 refers to the intrinsic matrix of the camera and 𝑷𝑐 is the homogeneous coordinate of 𝑷𝑐 ,
𝜋 (·) is an operator that takes the first two dimensions of a vector. After scaling, the reprojection
error is reduced to,

𝑒𝑠 =
𝑘∑
𝑗=1

∥
[
𝑢𝑠
𝑣𝑠

]
− 1
4
𝜋 ( 1

𝑧 𝑗
𝑲𝑻𝑷 𝑗 )∥2. (6)
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Such a loss will undoubtedly lead to performance degradation of the network which regards the
reprojection error as its supervision. Unfortunately, it is challenging for classification or threshold
screening to eliminate those seemingly “correct” points. Besides, these points are indeed observed
by the corresponding pixels. Consequently, relying solely on cross-modal learning is also insuffi-
cient for removing such correspondences, and it is necessary to design a matching constraint to
further refine the matching based on the correlation map.

In image matching, the matching relationship satisfies the following constraint: one pixel in an
image can at most match with one pixel in another image [32]. Inspired by that, we appropriately
relax this constraint criterion, apply it to I2P registration, and propose the point-max matching
constraints: a pixel matches at most one point. Considering the data structure of the correlation
map, point-max is performed via maximizing similarity in practice. Specifically, given a pixel 𝒑,
its receptive field contains 𝑘 candidate matching points 𝑷1, · · · , 𝑷𝑘 . Define the vector correlation
operator as 𝛿 . The fine-grained feature vectors of 𝒑 and 𝑷 are 𝒇(𝑓 𝑖𝑛𝑒,𝒑) and 𝒇(𝑓 𝑖𝑛𝑒,𝑷 ) , respectively.
Then the correlation between pixel 𝒑 and point 𝑷 is,

𝛿 (𝒑, 𝑷 ) = 𝒇(𝑓 𝑖𝑛𝑒,𝒑) · 𝒇(𝑓 𝑖𝑛𝑒,𝑷 ) (7)
Thus, the point 𝑷𝑝 matching with the pixel 𝒑 is,

𝑷𝑝 = argmax
𝑷𝑗

{(𝛿 (𝒑, 𝑷1), · · · , 𝛿 (𝒑, 𝑷𝑘 )), 𝑗 = 1, · · · , 𝑘}. (8)

Eq. 8 is similar to performing max pooling among the matching candidates and selecting the
candidate point with the highest correlation for the pixel. By applying Eq. 8 to the correlation map
𝑴𝒂𝒑𝑐𝑜𝑟 ∈ R𝑀×𝑁 , we can get the 2D-3D correspondences 𝑴𝒂𝒕𝒄𝒉𝑰 , where map 𝑴𝒂𝒑𝑐𝑜𝑟 ∈ R𝑀×𝑁

is expressed as,

𝑴𝒂𝒑𝑐𝑜𝑟 =


𝛿 (𝒑1, 𝑷1) · · · 𝛿 (𝒑1, 𝑷𝑁 )

...
. . .

...
𝛿 (𝒑𝑀 , 𝑷1) · · · 𝛿 (𝒑𝑀 , 𝑷𝑁 )

 , (9)

and the final correspondence 𝑴𝒂𝒕𝒄𝒉𝑰 is,

𝑴𝒂𝒕𝒄𝒉𝑰 =



𝑷𝑝1
...

𝑷𝑝𝑖
...

𝑷𝑝𝑀


. (10)

𝑴𝒂𝒕𝒄𝒉𝑰 is the 2D-3D correspondence derived from 𝑴𝒂𝒑𝑐𝑜𝑟 ∈ R𝑀×𝑁 by point-max selection,
where each element embeds a pair of corresponding 2D pixel and the 3D point. Through point-
max, the most similar match is selected in the one-to-many pixel-point correspondences, which
alleviates the adverse impact of the outliers. With 𝑴𝒂𝒕𝒄𝒉𝑰 , a set of equations that relate the ob-
served 2D image coordinates to their corresponding 3D point coordinates can be established. In
this way, the I2P registration problem becomes a PnP problem, and we iteratively optimize the
pose through EPnP under RANSAC.

3.6 Loss Function
In I2Pppsim, the performance of SFAM and CVD is particularly important. In order to obtain better
cross-modal descriptions and more accurate co-view region detection results, we propose a joint
loss function, which consists of the correlation loss and the co-view loss. For the correlation loss,
the matched pixel-point pairs are expected to have cross-modal features with higher similarity,
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and vice versa for unmatched pairs. It implies that the correlations between matched pairs and
unmatched pairs should have significant differences. For the co-view loss, based on the output
scores of CVD, we expect that the points and pixels in the co-view region have higher scores, and
the scores for outliers should be lower.

Correlation Loss. For the input image-point cloud pair (I,P), with the ground truth of relative
pose 𝑻 ∈ 𝑺𝑬 (3) and intrinsic matrix 𝑲 of the camera, the reprojection error 𝑒𝑝𝑟𝑜 between the pixel
𝒑𝑖 and point 𝑷 𝑗 = [𝑥 𝑗 , 𝑦 𝑗 , 𝑧 𝑗 ]𝑇 can be calculated by,

𝑒𝑝𝑟𝑜 (𝒑𝑖 , 𝑷 𝑗 ) = ∥𝒑𝑖 − 𝜋 ( 1
𝑧 𝑗

𝑲𝑻𝑷 𝑗 )∥2 . (11)

When 𝑒𝑝𝑟𝑜 is less than a safety threshold 𝑒𝑡 , 𝒑𝑖 and 𝑷𝑖 can be considered as a matched pair, other-
wise an unmatched pair. The matching ground truth is denoted by 𝑮 (𝒑𝑖 , 𝑷 𝑗 ),

𝑮 (𝒑𝑖 , 𝑷 𝑗 ) =
{
1, if 𝑒𝑝𝑟𝑜 (𝒑𝑖 , 𝑷 𝑗 ) < 𝑒𝑡

0, otherwise.
. (12)

With 𝑮 (𝒑𝑖 , 𝑷 𝑗 ), the correlation loss for a predicted pixel-point pair can be calculated according
to the correlation between the pixel-point feature vectors. As mentioned in Eq. 7, the correlation
between the feature vectors is denoted by 𝛿 (𝒑𝑖 , 𝑷 𝑗 ), where 𝒑𝑖 and 𝑷 𝑗 stand for the pixel and point,
respectively. Defining the logits function as 𝜉 , the loss of each pixel-point pair can be given as,

L(𝒑𝑖 ,𝑷 𝑗 ) = −𝑤 [𝑮 (𝒑𝑖 , 𝑷 𝑗 ) · log 𝜉 (𝛿 (𝒑𝑖 , 𝑷 𝑗 ))+
(1 − 𝑮 (𝒑𝑖 , 𝑷 𝑗 )) · log(1 − 𝜉 (𝛿 (𝒑𝑖 , 𝑷 𝑗 ))],

(13)

where𝑤 is the weight parameter.
There are 𝑀 × 𝑁 pixel-point pairs in 𝑴𝒂𝒑𝑐𝑜𝑟 ∈ R𝑀×𝑁 , and most of them are unmatched pairs.

In order to speed up the optimization and balance the sample distribution, during training, we
randomly select 𝑛 pixels and 𝑛 points in the co-view region for loss calculation and construct a
correlation map with the size of 𝑛 × 𝑛. Finally, based on L(𝒑𝑖 , 𝑷 𝑗 ), the correlation loss is defined
as,

L𝑐 =
1
𝑛2

𝑛∑
𝑖, 𝑗=0

L(𝒑𝑖 , 𝑷 𝑗 ). (14)

Co-View Loss. Similar to the correlation loss, we sample 𝑛 pixels 𝑰𝑝𝑜𝑠 and 𝑛 points 𝑷𝑝𝑜𝑠 in the
co-view region, and 𝑛 pixels 𝑰𝑛𝑒𝑔 and 𝑛 points 𝑷𝑛𝑒𝑔 out of the co-view region when calculating the
co-view loss. Instead of focusing on the correlation between pixels and points, the co-view loss
concerns whether the pixel or point belongs to the co-view region, which is a binary classification
problem. The classification scores of each pixel or point can be obtained by CVD, denoted by
𝑺𝐼 ,𝑝𝑜𝑠 , 𝑺𝑃,𝑝𝑜𝑠 , 𝑺𝐼 ,𝑛𝑒𝑔, and 𝑺𝑃,𝑝𝑜𝑠 . We expect that CVD can make the pixels and points in the co-view
region have higher scores and vice versa. So the co-view loss is defined as,

L𝑐𝑣 =
1
𝑛

∑
(𝑺𝐼 ,𝑛𝑒𝑔 + 𝑺𝑃,𝑛𝑒𝑔 − 𝑺𝐼 ,𝑝𝑜𝑠 − 𝑺𝑃,𝑝𝑜𝑠 ). (15)

Combining Eq. 14 and Eq. 15 yields the final joint loss function,

L𝑖2𝑝 = L𝑐 + L𝑐𝑣 (16)
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Table 1. Network hyperparameters of I2Pppsim, where𝐻4/𝑊4 denotes a quarter of image height/width. 𝑠𝑐𝑎𝑙𝑒
represents the reduction factor during the network inference.

Module Layer Type K Channel Dimensions

Point cloud
Feature
Extractor

Layer 1 - [32, 128, 256]
Layer 2 - [64, 64]
KNN Layer 32 [256, 256], [512, 256]
Layer 3 - [256, 512]

SFAM

Coarse layer Pa - [256, 𝐻4/𝑠𝑐𝑎𝑙𝑒 ×𝑊4/𝑠𝑐𝑎𝑙𝑒]
Coarse fusion layer Pa - [1024, 512, 512]
Coarse layer Pb - [256, 𝐻4/𝑠𝑐𝑎𝑙𝑒 ×𝑊4/𝑠𝑐𝑎𝑙𝑒]
Coarse fusion layer Pb - [512,128,128]
Fine Layer P - [128, 256, 128, 64]
Fine Layer I - [128, 256, 128, 64]

CVD
Detector Head P - [128,128,64, 1]
Detector Head I - [64,64,64, 1]

4 EXPERIMENTS
4.1 Setup
4.1.1 Dataset.

Our I2Pppsim was evaluated on KITTI Odometry [12] and Oxford Robotcar [25].
KITTI Odometry. In KITTI Odometry, the images and point clouds were acquired from an

RGB camera and a 3D LiDAR.The camera and LiDAR had fixed extrinsics 𝑻𝑝𝑐
𝑐𝑎𝑚 ∈ 𝑺𝑬 (3). This fixed

relative pose in training and testing would be prone to cause network overfitting. On this account,
it was necessary to perform data augmentation. Therefore, we followed the design of CorrI2P,
using a random pose 𝑻𝑟 to transform 𝑻𝑝𝑐

𝑐𝑎𝑚 and the point cloud. After taking augmentation, the
relative pose of image-point cloud pair became 𝑻𝑔𝑡 = 𝑻𝑝𝑐

𝑐𝑎𝑚𝑻
−1
𝑟 . Besides, the relative translation

between the image and point cloud was guaranteed less than 10m. We followed Ren et al.’s [30]
and Li et al.’s [23] settings to use the 0th∼8th sequences for training, and the 9th∼10th ones for
testing. During training and testing, the size of the image was set to 160 × 512, and the number of
points was 20,480. In total, there were 40,818 image-point cloud pairs used for training, and 5,584
pairs for testing.

Oxford Robotcar. Different from the acquisition method of point cloud in KITTI Odometry,
the point clouds in Oxford Robotcar were captured by 2D scanning using a 2D LiDAR. To make
the point clouds more dense, following DeepI2P, we spliced the adjacent point clouds at an interval
of 2m, and finally merged all the point clouds in an area within the radius of 50m. 34 sequences
were used for training and 4 sequences for testing. During training and testing, the image size was
set to 384×640, and the number of points was the same as that in KITTI Odometry. Finally, 109,398
image-point cloud pairs were used for training and 13,545 pairs for testing.

4.1.2 Implementation Details. We conducted all experiments on a workstation equipped with an
AMD Ryzen9 5900X processor and an NVIDIA GeForce RTX 3090 GPU. I2Pppsim was implemented
by Pytorch [26]. The Adam optimizer was used for network training. We trained our network over
25 epochs on each dataset. The batch size for training was 16, and 8 for testing. The learning rate
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Table 2. Registration accuracy on KITTI Odometry and Oxford Robotcar.

KITTI Odometry Oxford Robotcar

RTE (m) RRE (°) RTE (m) RRE (°)

Grid Cls. + EPnP 3.22 ± 3.58 10 ± 13.74 1.91 ± 1.56 2.94 ± 10.72

DeepI2P (3D) 3.17 ± 3.22 15.52 ± 12.73 2.27 ± 2.19 15.00 ± 13.64

DeepI2P (2D) 3.28 ± 3.09 7.56 ± 7.63 1.65 ± 1.36 4.14 ± 4.90

CorrI2P 2.32 ± 9.74 4.66 ± 6.79 3.20 ± 3.14 2.49 ± 8.51

EFGHNet 4.83 ± 2.92 4.58 ± 8.67 3.78 ± 3.48 4.76 ± 5.69

EP2P-Loc 1.32 ± 1.13 4.11 ± 5.46 3.56 ± 3.79 8.65 ± 9.81

Ours 1.18 ± 1.48 4.08 ± 4.46 2.95 ± 2.66 2.26 ± 5.12

of the optimizer was initialized as 10−3, and decayed by 75% every 5 epochs. During training, we
set the safe threshold of the reprojection error (𝑒𝑡 ) to 1 pixel.

Some important hyperparameters in I2Pppsim are reported in Table 1. The feature extractor of
image is ResNet34. It outputs four different scale feature maps (𝒇 1

𝐼 ∼ 𝒇 4
𝐼 ) of SFAM as mentioned in

Sec. 3.3.
In pose estimation, we experimentally set the co-view threshold of CVD as 0.9.The relative pose

was estimated by EPnP under the RANSAC framework. The number of iterations was 500, and the
reprojection error threshold was set to 1 pixel.

4.1.3 Evaluation Metrics. The Relative Rotation Error (RRE) and the Relative Translation Error
(RTE) are adopted to evaluate the performance of the registration, which are formulated as,

RRE =
3∑

𝑖=1

|𝜃 (𝑖) |

RTE = ∥𝒕𝑝𝑟𝑒𝑑 − 𝒕𝑔∥2,
(17)

where 𝜃 (·) denotes the Euler angle of 𝑹−1
𝑝𝑟𝑒𝑑

𝑹𝑔, and 𝜃 (1), 𝜃 (2), and 𝜃 (3) are roll, pitch, and yaw,
respectively. We denote the ground truth of the rotation matrix and relative translation vector by
𝑹𝑔, 𝒕𝑔, and the predicted ones by 𝑹𝑝𝑟𝑒𝑑 and 𝒕𝑝𝑟𝑒𝑑 .

4.1.4 Compared Methods. We compared our I2Pppsim with 4 other approaches, which were Grid
Cls.+PnP [23], DeepI2P (2D) [23], DeepI2P (3D) [23], CorrI2P [30], EFGHNet [17], and EP2P-Loc
[19]:

• Grid Cls.+EPnP.This method was proposed in DeepI2P [23]. It divides the image into grids
with the same size. For example, in the evaluation on KITTI Odometry, an image is divided
into 80 grids, with a size of 5 × 16. Grid Cls.+EPnP predicts which grid the point cloud
belongs to through a classification network. The 2D-3D correspondences are built from the
classification results.With such correspondences, a PnP solver is used to estimate the relative
pose.

• DeepI2P. Based on the idea of frustum binary classification, DeepI2P trains a frustum clas-
sifier to judge whether the point cloud is within the field of view of the camera. With the
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classification results, it proposes 2D / 3D inverse camera projection to estimate the relative
pose, called DeepI2P (2D) / DeepI2P (3D), respectively.

• CorrI2P. This method builds 2D-3D correspondences using the outputs of multi-modal
branches. Based on those correspondences, the relative pose is estimated accordingly. We
used the same network settings as those in the paper to reproduce the work. To our knowl-
edge, CorrI2P is the state-of-the-art (SOTA) approach for image-to-point cloud registration.

• EFGHNet.Thismethod adopts a divide-and-conquer strategy to decouple feature alignment
and feature matching, and estimates the pose based on the feature matching results.

• EP2P-Loc. EP2P-Loc establishes 2D-3D correspondences through multi-scale matching and
uses a differentiable PnP layer to directly estimate the relative pose. Due to the lack of open-
source code, we reproduced this method as described in the paper.

(a) KITTI Odometry (b) Oxford Robotcar

Fig. 6. Comparison of the registration recall of differentmethodswith various RTE (m) and RRE (°) thresholds
on KITTI Odometry and Oxford Robotcar. The area under each curve is presented behind the corresponding
method’s name.

4.2 Quantitative Experiments
Different from CorrI2P which uses the error threshold to eliminate data with large RTE and RRE,
we believe that using all test data to evaluate the accuracy of the algorithm can better reflect the ro-
bustness of the registration method. Therefore, we followed DeepI2P and compared I2Pppsim with
competing methods on all test data of KITTI Odometry and Oxford Robotcar. The results achieved
are reported in Table 2. It can be seen that I2Pppsim achieves significantly better performance over
other counterparts on KITTI Odometry. As for Oxford Robotcar, although I2Pppsim achieves the
best performance on RRE, it did not perform as well as other SOTA approaches on RTE. The main
reason for this phenomenon is the preprocessing method of the point cloud. The point cloud in

J. ACM, Vol. 1, No. 1, Article 1. Publication date: April 2024.



1:14 (Yunda Sun, Lin Zhang, Zhong Wang, Yang Chen, Shengjie Zhao and Yicong Zhou

Oxford Robotcar is formed by accumulating the 2D LiDAR scanning results from nearby areas. As
a result, ghosting and blurring of many dynamic objects may emerge, which makes it difficult for
I2Pppsim to predict correct correspondences among pixels and points. However, Grid Cls.+EPnP,
DeepI2P (2D), and DeepI2P (3D) only need to predict rough grid classification or point cloud vis-
ibility results, without establishing strict pixel-point correspondences, so their performance on
translation estimation is relatively better.

To compare the registration performance in more detail, we drew the registration recall curve
under different RRE and RTE thresholds on the two datasets and calculated the area under the
curve in Fig. 6. It can be seen that the performance of each approach is basically the same as
Table 2 shows. However, we find that the leading edge of I2Pppsim over CorrI2P is narrow, which
is different from the significant advantage of I2Pppsim shown in Table 2.

To dive deep into this phenomenon, we plotted the error distributions of the two approaches
with a higher error threshold on KITTI Odometry in Fig. 7. It can be found that many large errors
emerge in the results of CorrI2P. In contrast, I2Pppsim performs more stably, and there are few cases
where the errors are extremely large.

I2Pppsim CorrI2P
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Fig. 7. Histograms of error distributions of I2Pppsim and CorrI2P at high RTE and RRE thresholds.

Error Distribution. I2Pppsim’s error distributions of RRE (°) and RTE (m) on KITTI Odometry
and Oxford Robotcar are shown in Fig. 8. Obviously, the translation estimation ability of I2Pppsim
on KITTI Odometry is stronger than that on Oxford Robotcar, while the rotation estimation ability
is weaker than that on Oxford Robotcar.Themode of RTE/RRE is ∼0.5𝑚/1°on KITTI Odometry and
∼2𝑚/2°on Oxford Robotcar.

4.3 Qualitative Experiments
To compare the performance of different methods more intuitively, we demonstrated the 2D-3D
correspondences they generated. When generating the correspondences, the reprojection error
threshold was set to 1 pixel. We show the 2D-3D correspondences in Fig. 9, where the wrong
matches are in red and the correct ones in green.
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(a) KITTI Odometry (b) Oxford Robotcar
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Fig. 8. Histograms of RTE (m) and RRE (°) on KITTI Odometry and Oxford Robotcar obtained by I2Pppsim.

Original Grid Cls.+ EPnP CorrI2P Ours

Fig. 9. 2D-3D correspondences established by different methods. The line segments represent 2D-3D corre-
spondences, where red indicates false ones and green indicates correct ones.
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Obviously, the “slopes” of the correspondence line segments are positively correlated with the
reprojection errors. As mentioned in Sec. 3.5, as the visual depth grows, one pixel often corre-
sponds to multiple points, which is particularly evident in Grid Cls.+EPnP and CorrI2P. For Grid
Cls.+EPnP, amid the network’s inference, the final feature map’s size is downscaled at least 64
times compared with the raw input. After image downscaling, in KITTI Odometry, there are only
5 × 16 image grids and 20,480 points classified into these grids. As shown in the column “Grid
Cls.+EPnP” of Fig. 9, one pixelmay correspond to several or even dozens of points. Under the frame-
work of grid classification of Grid Cls.+EPnP, even if the correspondences are correctly matched,
their “slopes” can still be large. Such rough correspondences make it difficult to estimate the ac-
curate pose. CorrI2P alleviates this phenomenon by reducing the times of image downscaling.
However, there are still a lot of one-to-many correspondences, which mislead the pose estimation.
Compared with the above methods, I2Pppsim handles the one-to-many correspondences through
point-max. With such a strategy, the 2D-3D correspondences distribute more uniformly. More-
over, the wrong matches will be reduced from one cluster to one. These advantages are reflected
in the notable improvement of the registration accuracy.

In addition, benefiting from SFAM proposed in Sec. 3.3, the 2D-3D correspondences generated
by I2Pppsim are also more accurate than the competing methods. In Fig. 9, to make the visualization
clearer, we downsampled the correspondences and filtered out the wrong ones with reprojection
errors of less than 15 pixels. It is notable that the correlation prediction of I2Pppsim is more accurate,
and there is basically no significant reprojection errors. We believe that the alignment feature
space in SFAM plays an active role. Amid the coarse-to-fine feature alignment of I2Pppsim, the fine-
grained features are utilized to predict pixel-point correspondences, while the counterparts only
conduct feature fusion in a one-stage pattern. Also, the effective guidance of the correlation loss
enables I2Pppsim to more directly predict the pixel-point correspondences, thus further improving
the ability of correspondence prediction.

4.4 Ablation Study
To verify the effectiveness of each module in our approach, we conducted ablation studies on our
I2Pppsim using KITTI Odometry. The baselines involved in the ablation study are elaborated as
follows,

• PC-CVD : CVD for point clouds;
• IMG-CVD : CVD for images;
• w/o CVD : I2Pppsim without CVD;
• Direct Regression : I2Pppsim without SFAM and CVD;
• CorrI2P (point-max) : CorrI2P with point-max;
• I2Pppsim (w/o point-max) : I2Pppsim without point-max;
• I2Pppsim (mutual check) : I2Pppsim with mutual check.
• I2Pppsim (w/o fine) : I2Pppsim without fine stage in SFAM.
• I2Pppsim (w/o coarse) : I2Pppsim without coarse stage in SFAM.

Table 3. Accuracy of CVD on KITTI Odometry.

Recall Precision F2-Score Accuracy

PC-CVD 0.962 0.901 0.949 0.973

IMG-CVD 0.782 0.732 0.771 0.791
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Analysis on CVD. I2Pppsim detects the co-view region between the camera and the LiDAR
through CVD and establishes 2D-3D correspondences based on the points and pixels in that region.
In this way, we can effectively reduce the time cost and storage space of 𝑴𝒂𝒑𝑐𝑜𝑟 . Before CVD is
used, the storage space of𝑴𝒂𝒑𝑐𝑜𝑟 is 12.5MB. After CVD selecting,𝑴𝒂𝒑𝑐𝑜𝑟 is notably compressed to
1.15MB. Also, the time cost of the correlation map computing is largely reduced from 33.3 seconds
to 0.51 seconds. Furthermore, we evaluated CVD’s recall, precision, F2-score, and accuracy, and
the results are reported in Table 3. It can be seen that CVD has advanced co-view region detection
performance, achieving accuracies of 97.3% and 79.1% for images and point clouds, respectively.
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Fig. 10. Ablation study of SFAM on KITTI Odometry.

Analysis on SFAM. SFAM can fully integrate the multi-scale features of images and point
clouds and mine the correlation between them. It enables I2Pppsim to perform co-view region de-
tection, improves the ability to extract cross-modal features, and enhances the accuracy of 2D-3D
matching. To verify such a claim, we carried out ablation experiments to analyze the importance of
SFAM. Specifically, we designed a network without SFAM and CVD, called Direct Regression. Di-
rect Regression only extracts the respective features of the image and the point cloud and predicts
the matching relationship between pixel and point via direct regression. Feature matching recall
was utilized to analyze the performance of Direct Regression and the results are shown in Fig. 10.
It can be observed that Dircet Regression without feature fusion has a poor ability to predict cor-
rect feature matching. This is mainly due to the huge modal difference between the image and the
point cloud, which makes the network unable to extract effective common features. Consequently,
the poor matching prediction ability of Dircet Regression further justifies the necessity of feature
fusion.

In addition, to explore the impact of the coarse-to-fine architecture on feature matching, we
constructed a network without CVD (w/o CVD) which only uses fine-grained features to gener-
ate 𝑴𝒂𝒑𝑐𝑜𝑟 . Also, the feature matching recall was utilized as the metric to compare the impact of
using coarse-grained features for co-view region judgment on the establishment of 2D-3D corre-
spondences.The corresponding I2Pppsim uses coarse-grained features for co-view region screening
and then generates 2D-3D correspondences by fined-grained features. The relevant experimental
results are shown in Fig. 10. Compared with “w/o CVD”, it is evident that the introduction of
coarse-grained features has a significant positive effect on the establishment of 2D-3D correspon-
dences.

To analyze the impact of each stage of SFAM, we conducted ablation experiments on SFAM,
and the results are presented in Table 4. We removed the fine stage of SFAM (I2Pppsim (w/o fine))
to analyze the impact of the weight-sharing network. Similarly, we removed the coarse stage of
SFAM (I2Pppsim (w/o coarse)), which means that SFAM only adopts the weight-sharing network
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to fuse the features of images and point clouds. From Table 4, it can be seen that both the coarse
stage and fine stage of SFAM have a positive effect on registration performance.

Table 4. Ablation results of point-max and SFAM.

Method RTE (m) RRE (°)

CorrI2P 2.32 ± 9.74 4.66 ± 6.79

CorrI2P (point-max) 1.45 ± 1.62 4.32 ± 5.03

I2Pppsim (w/o point-max) 1.95 ± 2.97 4.31 ± 6.41

I2Pppsim (mutual check) 1.44 ± 2.19 4.26 ± 6.13

I2Pppsim (w/o fine) 2.12 ± 2.67 4.41 ± 6.26

I2Pppsim (w/o coarse) 2.46 ± 2.80 4.82 ± 6.84

I2Pppsim 1.18 ± 1.48 4.08 ± 4.46

Analysis on Point-max. Based on 𝑴𝒂𝒑𝑐𝑜𝑟 , point-max is employed to find the matching point
for each pixel. In this way, I2Pppsim filters out a large number of outliers that are difficult to elimi-
nate only via the feature distances, therefore improving the registration accuracy.

To demonstrate the effectiveness of point-max, we compared the registration performance of
I2Pppsim, I2Pppsim without point-max, and I2Pppsim with mutual check. Among them, I2Pppsim with
mutual check was achieved by applying point-max to both pixels and point clouds and conducting
consistency check on the point-max results. In addition, since point-max is a feature-independent
matching constraint strategy that can be considered as a plug-and-play module for other ap-
proaches, we also applied it to CorrI2P and compared the registration performance of point-max
before and after use. All the above experimental results are reported in Table 4. It is notable that
the introduction of point-max significantly improves the performance of the I2P registration ap-
proaches, especially in terms of translation estimation. Such a result also confirms the negative
impact of the one-to-many correspondences on registration. Specifically, the introduction of mu-
tual check led to another serious problem, i.e, the number of available 2D-3D correspondences will
sharply decrease.The average number of matching pairs is only 307 for I2Pppsim withmutual check,
while the count for the original I2Pppsim is 2,264. This sparsity of matching pairs has a detrimental
effect on the performance of subsequent pose estimation which relies on nonlinear optimization
techniques.

5 CONCLUSION
In order to fulfill the task of image-to-point cloud registration, this paper presents a novel frame-
work based on alignment feature space learning, namely I2Pppsim. I2Pppsim leverages SFAM (Shared
Feature Aggregation Module) to enhance the network’s ability to extract cross-modal features.
Moreover, amatching strategy called point-max is proposed to address the one-to-many correspon-
dences caused by scale ambiguity. Extensive experiments were conducted on benchmark datasets,
namely KITTI Odometry and Oxford Robotcar, to demonstrate the outstanding performance of
I2Pppsim. Furthermore, we conducted ablation studies to validate the efficacy of eachmodule within
the framework.The promising results obtained from these experiments suggest that I2Pppsim holds
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potential for utilization in other tasks that require cross-modal fusion, such as multi-sensor calibra-
tion. In future work, we will devote our efforts to further improve the scalability of our framework,
e.g., to make it leverage the pose as supervisory information and support multi-agent systems.
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