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Abstract—In the robotic vision industry, recent years have wit-
nessed a growing interest in object detection and pose estimation
for precise robotic arm grasping. In fact, various unfavorable
factors, such as the size limitations of robotic grippers, the
diversity and potential complexity of object shapes and poses,
and the cluttered environment, make robotic arm grasping based
on 6D object poses much harder than it seems. In this paper,
to solve these issues to some extent, we proposed a speech-
driven zero-shot system for robotic arm grasping, called WSGS
(Whisper-SAM6D Grasping System). It enables speech-driven
human-interactive grasping with the Franka Emika robotic arm
by performing instance segmentation and pose estimation based
on speech instructions. Specifically, WSGS accurately recognizes
the 6D pose of an unknown object and adapts to its size to find the
most suitable position for grasping. Comprehensive experiments
on our real-world scenarios demonstrate that WSGS can produce
high-accuracy instance segmentation and pose estimation results,
achieving adaptive robotic arm grasping of unknown objects
based on speech commands.

Index Terms—Robotic arm grasping, instance segmentation,
pose estimation, semantic understanding

I. INTRODUCTION

In recent years, the rapid advancement of robotics and
autonomous systems has significantly expanded the scope
of robotic applications in tasks such as assembly, advanced
manufacturing, human-robot collaboration, and inter-robot co-
operation. To effectively complete these tasks, robots with ex-
cellent grasping capabilities are necessary [1]. Current robotic
arm grasping techniques are primarily classified into two
major categories: analytical methods [2]–[4] and data-driven
methods [5]. The former relies on the geometric information
of objects to compute grasp poses. However, its performance
significantly deteriorates when applied to unknown objects or
unstructured scenarios. The latter, grounded in deep learning,
learns grasping strategies from large-scale datasets. Neverthe-
less, it is highly dependent on extensive training data and
computational resources.

To successfully grasp objects, accurate instance segmenta-
tion and pose estimation are indispensable challenges. Over the
past few years, several innovative frameworks have been pro-
posed to address these challenges, such as the Segment Any-
thing Model (SAM) [6] and SAM-6D [7]. These frameworks
have demonstrated significant potential in zero-shot instance
segmentation and pose estimation tasks. Despite the excellent
performance of SAM-6D, its application and integration in
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Fig. 1. The robotic arm successfully executed the grasping task in response
to the speech command “Help me grasp the whiteboard marker on the desk”.

practical grasping tasks remain relatively limited. Specifically,
existing research has yet to provide an effective solution for the
seamless integration of pose estimation of unknown objects in
the real world with robotic arm grasping tasks. Moreover, the
current grasping systems necessitate the necessary flexibility,
especially in extracting user intent from natural language
commands and executing corresponding grasping tasks. Most
existing methods are insufficient to simultaneously handle
arbitrary, non-fixed template speech commands and grasp
unknown objects. Therefore, a more advanced user interaction
mechanism is urgently required, enabling users to directly
control robotic arms via speech commands to accomplish zero-
shot grasping tasks.

To address the above limitations, this paper introduces a
speech-driven zero-shot robotic arm grasping system, named
Whisper-SAM6D Grasping System (WSGS). Designed specif-
ically for human-interactive grasping tasks using the Franka
Emika robotic arm, WSGS integrates speech command recog-
nition, semantic understanding, instance segmentation, pose
estimation, and robotic arm grasping into a unified framework.
WSGS first employs the Whisper model to transcribe speech
commands into text and then extracts key objects from the
instructions based on a Transformer-based natural language
processing model, BERT [8]. Secondly, in the segmentation
module of WSGS, the Semantic-based Instance Segmentation
Model assigns matching scores by combining semantic, ap-
pearance, geometric, and contextual information to candidate
objects, enabling the identification of novel objects in sce-
narios where objects are occluded. After that, the Semantic-



enhanced Pose Estimation Model uses the point registration
approach to estimate the 6D bounding box of the target
object relative to the candidate instance. Notably, the semantic
embeddings from Whisper and BERT are combined with geo-
metric features to enhance the pose estimation process, using
attention mechanisms to weigh both semantic and geometric
features for improved accuracy. Finally, considering the 6D
bounding box of the object and the gripper size limitation, a
proper grasping angle for the robotic arm can be determined,
guaranteeing that WSGS can achieve grasping at a high
successful rate.

Our contributions are summarized as follows:

• A novel speech-driven zero-shot 6D grasping pipeline
for the robotic arm, WSGS. WSGS performs zero-shot
instance segmentation by incorporating semantic informa-
tion prompts. The segmentation results are then semantic-
enhanced and matched with objects to obtain precise
6D pose estimation, enabling 6D grasping of unknown
objects in complex environments.

• The first robotic arm grasping strategy that considers ob-
ject size and gripper size limitations. Traditional grasping
strategies often neglect the size constraints of robotic arm
grippers. WSGS estimates the object’s pose using stereo
bounding boxes by combining 6D pose information and
CAD models. The narrowest edge of the bounding cube
is then selected for grasping, effectively handling a wide
range of complex object shapes and orientations.

• Extensive experimental results demonstrate the effective-
ness of WSGS. Based on WSGS, the Franka Emika
robotic arm successfully executed 6D grasping tasks for
unknown objects in various situations, showcasing the
robustness and practicality of the proposed method in
real-world scenarios.

II. RELATED WORK

A. Object Detection and Segement

Object detection is a key task in computer vision, with
significant progress driven by deep learning. Methods like
YOLO [9], [10] and Faster R-CNN [11] are widely used for
their accuracy and efficiency. Transformer-based models such
as DETR [12] have further advanced the field by enabling
end-to-end detection with attention mechanisms. Despite ad-
vancements in accuracy and efficiency, existing methods face
challenges. YOLO and Faster R-CNN struggle with general-
ization to unknown objects or cross-domain scenarios. Tra-
ditional methods provide bounding box information but lack
precise object shapes or semantic segmentation. While DETR
performs well in complex scenes, its high computational cost
limits real-time use. These issues have led research towards
object segmentation, which improves scene understanding.
The Segment Anything Model (SAM) [6] has made break-
throughs in zero-shot object segmentation, but it focuses on
segmentation rather than directly addressing pose estimation
or grasp planning for robotic manipulation.

B. Pose Estimation of Unknown Objects

Pose estimation is vital for robotic manipulation and aug-
mented reality, especially with unknown objects. Traditional
methods like Gen6D [13] and MegaPose [14] perform well
for known objects but struggle with unseen ones. Approaches
like OnePose [15] and ZeroPose [16] improve generalization
using structure-from-motion and geometric matching, but face
challenges with occlusion, segmentation errors, and efficiency.
The SAM-6D framework [7] combines SAM’s segmentation
with pose estimation, enhancing accuracy through a two-stage
process and a Sparse-to-Dense point transformer. Despite its
success in benchmarks, its application in robotic arm tasks
remains limited.

C. Adaptive Grasping

Adaptive grasping has been challenging due to complex
object shapes. Early methods predicted grasp points based
on object geometry [17], but were computationally expensive.
Data-driven deep learning approaches have become dominant
[18]. Bohg et al. [5] and Kroemer et al. [19] used 3D
model databases and active learning for better accuracy, while
supervised learning [20], [21] enabled grasp planning for
unknown objects from RGB images. However, these methods
require large computational resources and data. WSGS im-
proves grasping by using predefined points and pose estimation
to adapt to object position and orientation, offering robust,
low-complexity grasping.

III. METHOD

In this section, the proposed WSGS framework will be
described in detail, and its structural diagram is shown in
Fig. 2. WSGS first utilizes the Whisper model for speech
recognition, converting speech commands into text. The BERT
model is then applied to extract key object features, which
is subsequently used to guide the Semantic-based Instance
Segmentation Model (SISM) in generating more accurate
segmentation prompts. During the segmentation phase, the
framework calculates matching scores by combining semantic,
appearance, geometric, and contextual information. Following
this, the Semantic-enhanced Pose Estimation Model (SPEM) is
employed to estimate the 6D pose of the target object. Finally,
WSGS computes a compact 6D bounding box for the object
and selects the optimal grasping direction and position.

A. Speech Recognition and Semantic Understanding

In practice, complex robotic arm grasping tasks in real-
world scenarios require not only static image information but
also the ability to understand and respond to external com-
mands. Traditional ISM methods [7] rely on prompt generation
based on image content, which can lead to redundant or missed
segmentations when confronted with cluttered environments.
To achieve more precise recognition and segmentation of
target objects, WSGS introduces Whisper and BERT as front-
end processing modules, using speech commands and natural
language descriptions to generate prompts that are better suited
to grasping instructions. Due to its outstanding performance
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Fig. 2. The architecture sketch of the proposed WSGS system. In WSGS, semantic information is extracted from speech commands and used to guide instance
segmentation and improve pose estimation. Finally, the results of pose estimation are used to guide the robotic arm grasping.

in multilingual speech recognition and strong adaptability to
background noise and dialects, the Whisper model was utilized
to generate real-time textual outputs from speech commands,
providing a reliable data source for semantic understanding of
the target object:

Pspeech = Whisper(S), (1)

where S represents the input speech signal, and Pspeech is the
textual instruction output by Whisper.

Subsequently, WSGS utilizes a pre-trained BERT model to
perform Named Entity Recognition (NER). BERT is used to
interpret and embed the text output from Whisper semanti-
cally:

Psem = BERT(Pspeech), (2)

where Psem represents the semantic embedding output by
BERT, which encodes key features of the target object, such
as color and location. This semantic embedding can be used as
input for the improved prompt generation strategy, which, in
combination with prior information from speech commands,
guides the instance segmentation model to focus more ac-
curately on the region containing the target object, thereby
generating dynamic and dense prompts tailored to the target
object.

B. Instance Segmentation and Pose Estimation
Semantic-based Instance Segmentation Model (SISM). In
the instance segmentation stage, WSGS employs SISM, an
improved Instance Segmentation Model (ISM) proposed by
us, for semantic-guided segmentation of target object instances
in cluttered scenes. Specifically, for an input RGB image
I, SISM performs segmentation with the assistance of the
Segment Anything Model (SAM) [6] based on prompts Pr,
using three modules: an image encoder ΦImage, a prompt
encoder ΦPrompt, and a mask decoder ΨMask. The segmentation
process is formalized as:

M, C = ΨMask(ΦImage(I),ΦPrompt(Pr)), (3)

where M and C denote the predicted proposals and their
corresponding confidence scores, respectively. Traditional ISM

methods usually employ zero-shot transfer to generate all
possible segmentation prompts Pr with a uniform 2D grid,
which may lead to redundancy or omissions. In contrast,
our SISM generates more focused proposals by incorporating
semantic-guided generation, leveraging target object infor-
mation from speech commands. Specifically, by integrating
semantic embeddings, (3) can be rewritten as:

M̃, C̃ = ΨMask(ΦImage(I),ΦPrompt(Pr,Psem)). (4)

From the candidate set M, ISM assigns a matching score
sm to each candidate m ∈ M, which is used to identify
instances matching the target object O. The matching score
sm is evaluated based on three aspects [7]: semantic similarity
ssem, appearance similarity sappe, and geometric similarity sgeo.
To account for occlusion, a visibility ratio rvis is introduced
to adjust the weight of the geometric score dynamically.

For the appearance matching score sappe, a weighting
strategy is introduced in SISM to enhance the precision of
matching for regions surrounding the target object, as such
information is often provided in speech commands. The up-
dated weighted appearance matching score is formulated as
follows:

s̃appe =
1

N patch
Im

N patch
Im∑

j=1

max
i=1,...,Npatch

Tbest

wj · ⟨f patch
Im,j ,f

patch
Tbest,i

⟩
∥f patch

Im,j∥ · ∥f
patch
Tbest,i

∥
, (5)

where wj is a weighting factor emphasizing regions around the
target object, N patch

Im
is the number of patches in the candidate

region Im, and f patch
Im,j is the feature vector of the j-th patch

in Im. Similarly, N patch
Tbest

denotes the number of patches in the
target template Tbest, with f patch

Tbest,i
as the feature vector of the

i-th patch in Tbest.
In addition, SISM incorporates contextual information from

speech commands, such as object positions, to optimize
segmentation and matching, significantly improving success
rates in complex environments. For commands with positional
information, SISM focuses on the relevant region for precise
segmentation and matching of the target object. The degree of



alignment between the target object and its relative position to
other objects is represented by the contextual matching score:

scontext = exp

(
−d(p,pk)

2

2σ2

)
, (6)

where p represents the target object’s position, pk the position
of a known object, and σ the standard deviation of the gaussian
function, controlling the spatial distance influence on the
contextual matching score. A smaller σ increases the impact
of closer objects. The improved matching score calculation is
thus formulated as follows:

s̃m =
ssem + s̃appe + wcontext · scontext + rvis · sgeo

1 + 1 + wcontext + rvis
, (7)

where wcontext is the weighting coefficient for contextual in-
formation, reflecting the importance of the contextual object
in matching. Higher weights are assigned to objects that are
spatially closer to the target.
Semantic-enhanced Pose Estimation Model (SPEM). After
the instance segmentation, WSGS utilizes an improved Pose
Estimation Model (PEM) which further incorporates semantic
features from speech commands to predict the 6D pose of
the target object O corresponding to a candidate region. For
each candidate object m, PEM employs a point registration
approach to estimate the 6D pose of m relative to O. To
incorporate the semantic information from speech commands,
SPEM first concatenates the semantic embeddings Psem with
the geometric features Fm and Fo to form an enhanced feature
representation. The attention matrix A is then designed to
include the semantic features as follows:

A =
[
f bg
m ,Fm,Pm

sem

]
×
[
f bg
o ,Fo,Po

sem

]T ∈ R(Nm+1)×(No+1),
(8)

where f bg
m ∈ RC and f bg

o ∈ RC are background feature vectors
for candidate object m and target object O, respectively. Fm ∈
RNm×C and Fo ∈ RNo×C are feature matrices of the point
sets with Nm and No as the number of points, respectively.
Pm

sem and Po
sem are the semantic features of the candidate and

target objects, respectively.
Next, the attention matrix A undergoes a normalization

procedure to obtain the soft assignment matrix Ã:

Ã = Softmaxrow

(
A

τ

)
· Softmaxcol

(
A

τ

)
, (9)

where A is the semantic-enhanced attention matrix,
Softmaxrow() and Softmaxcol() apply Softmax along the rows
and columns, respectively, with τ as a constant temperature.
The values in each row of Ã (excluding the background row)
represent matching probabilities between point pm ∈ Pm and
points in Po, with the matching point po ∈ Po determined by
the maximum value’s index.

After obtaining Ã, the matching pairs {(pm,po)} and their
scores are collected, and Weighted Singular Value Decompo-
sition (SVD) is applied to compute the final pose:

R, t = SVD(Wij(Pf
m,Pf

o )), (10)

where Wij is the weight matrix representing the weighted
relationships between the point pairs, which combines both
geometric similarity and semantic similarity:

Wij = α · sgeo(p
i
m,pj

o) + β · ssem(p
i
m,pj

o), (11)

where α and β are the weight coefficients that balance the
contributions of each similarity measure.

C. Adaptive Grasp

With SPEM, the compact 6D bounding box of the detected
target object can be obtained. This allows for the approximate
description of the object’s shape and pose using a simple
cubic approximation, which can then be employed to guide the
selection of grasping positions and angles. Unlike traditional
grasping strategies that rely solely on detailed geometric
features of the object, the adaptive grasping strategy of WSGS
offers a solution to the grasping problem for objects with
complex shapes. Through the compact bounding box, the
standard grasping point is defined as the cube center, denoted
by c. Specifically, the initial direction vector a of the object is
selected, where a represents the direction vector of the longest
edge of the bounding box. Using the rotation matrix R output
by SPEM, the object direction vector a is updated in real-time
to the current direction a′:

a′ = R · a, (12)

where a′ represents the current direction vector. Considering
the limited size of the gripper, the plane of the grasping
direction is selected to be perpendicular to the current direction
vector. This ensures that the gripper can grasp the object at its
minimum cross-sectional area. To ensure grasping stability, the
robotic arm is directed to choose a direction that is perpendic-
ular to the current direction vector a′ and close to the gravity
direction as the grasping direction. This approach effectively
maximizes the stability of the gripper-object contact, avoiding
sliding or instability due to an improper grasping angle.
Additionally, selecting a direction close to gravity helps reduce
interference from external forces during the grasping process,
ensuring that the object remains firmly in place after being
grasped, thereby reducing mechanical strain and improving
both the success rate and accuracy of the grasping. Next, we
will introduce our grasping strategy mathematically in detail.

Assuming the gravity direction unit vector is g =
[0, 0,−1]T , g should be projected onto a′ to obtain the
component of g in the direction of a′, denoted by proja′(g):

proja′(g) =
g · a′

a′ · a′a
′, (13)

where · represents the dot product operation. The part of g
parallel to a′ is removed, resulting in

g′ = g − proja′(g), (14)

where g′ is perpendicular to a′. Finally, normalizing g′ yields
the grasping vector v:

v =
g′

∥g′∥
. (15)
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Fig. 3. The results of instance segmentation (within green bounding boxes) and pose estimation (within red bounding boxes). Specifically, (a) illustrates the
performance of WSGS on the BOP dataset and (b) presents the results applied to unknown objects in a real laboratory environment.

TABLE I
THE PERFORMANCE OF COMPARED METHODS ON INSTANCE

SEGMENTATION, POSE ESTIMATION, AND ROBOTIC ARM GRASPING IN
REAL-WORLD SCENARIOS.

Methods S-AOI (%) E-CPE (cm) RE (°) U-GSR (%) O-GSR (%)

CNOS 90.4 - - - -
ZeroPose 89.5 0.9 6.1 - -
MegaPose 91.2 0.7 5.8 - -
O3DGSA - 1.2 - 78.5 71.0

GraspNeRF - 0.8 5.9 89.0 81.5
WSGS (Ours) 91.7 0.6 5.6 92.5 90.0

With the cube center c and the grasping vector v, accurate
grasping of the target object can then be conducted effectively.

IV. EXPERIMENT

A. Experimental Setup

The experiments were conducted in an environment config-
ured with Ubuntu 20.04 as the operating system and Python
3.8.10 as the development language. The hardware included
an NVIDIA Corporation Device 2204 (rev a1) GPU, running
with CUDA 11.3 and PyTorch version 1.10.1+cu113. The
Franka Emika robotic arm and the Realsense D435i depth
camera were utilized. The control of the robotic platform
was implemented using the Franka Control Interface (FCI).
Experiments were performed on the core dataset LM-O of the
BOP benchmark [22] and in our real laboratory environment
equipped with a Franka robotic arm.

B. Quantitative Experiments

We compare our method with the following baselines:

• CNOS [23]: a novel method for segmenting unseen
objects in RGB images using their CAD models.

• ZeroPose [16]: a zero-shot 6D pose estimation framework
that enables fast, model-free pose estimation of novel ob-
jects using a Discovery-Orientation-Registration (DOR)
pipeline.

• MegaPose [14]: a method for 6D pose estimation of novel
objects, using a render&compare strategy and a coarse
pose estimation network, without retraining.

• O3DGSA [17]: a computational algorithms designed to
generate stable and effective 3D object grasps for au-
tonomous multi-fingered robotic hands.

• GraspNeRF [24]: a multiview RGB-based 6-DoF grasp
detection network.

We measure the performance of compared methods above
by Segmentation Accuracy with Occluded Instances (S-AOI),
Error in Centre Position Estimation (E-CPE), Rotation Error
(RE), Unobstructed Grasp Success Rate (U-GSR), and Ob-
structed Grasp Success Rate (O-GSR).

The experiment was conducted on 40 instances at five test
positions on three aspects, involving instance segmentation,
pose estimation, and robotic arm grasping trials. Two of these
test positions involved occlusion of the target objects, for
which speech instructions with positional information were
provided during the grasping process. The results are summa-
rized in Table I. It is observed that WSGS outperforms other
methods in segmentation accuracy when handling occluded
instances and achieves higher precision in estimating the
target object’s center position. Additionally, WSGS shows the
smallest 6D pose estimation error and significantly improves
the grasping success rate compared to previous methods.
Moreover, in the presence of occlusion, WSGS shows minimal
performance degradation, maintaining a 90.0% success rate in
object grasping. These findings demonstrate that WSGS pro-
vides high robustness and accuracy across multiple evaluation
tasks, particularly excelling in handling grasping tasks with
occlusion.



Fig. 4. The robotic arm successfully achieves 6D grasping of unknown objects
with different poses in complex real-world environments.

C. Qualitative Experiments

Based on our SISM model, WSGS demonstrates outstanding
object segmentation and matching capabilities in complex
backgrounds and scenarios where objects are occluded. Be-
sides, leveraging the SPEM model, the system achieves excel-
lent point cloud matching and 6D pose estimation performance
in challenging environments. The visualization results of both
SISM and SPEM are shown in Fig. 3, where it can be observed
that the estimated results of WSGS are highly consistent with
the ground truth. Based on accurate estimation results, WSGS,
using an adaptive grasping strategy, determines the optimal
grasping angle and endpoint position. An example of grasping
in a real laboratory environment is shown in Fig. 4. The
results indicate that WSGS is capable of generating feasible
and reasonable grasp positions and poses, enabling successful
grasping of objects with a maximum width exceeding the
gripper’s size, even in cases where the gripper’s size is limited.
However, a failure case was observed when attempting to grasp
soft and easily deformable objects. In the absence of a force
feedback mechanism, the application of excessive grasping
force frequently resulted in damage to the objects.

V. CONCLUSION

In this paper, the Whisper-SAM6D Grasping System
(WSGS) was proposed as a robust framework for object
manipulation based on speech commands in real-world en-
vironments. In WSGS, initially, speech recognition and se-
mantic understanding are performed. Following that, semantic
information guides the Semantic-based Instance Segmentation
Model (SISM) to generate accurate segmentation prompts and
optimize matching scores. Then, the Semantic-enhanced Pose
Estimation Model (SPEM) uses point registration, combining
semantic embeddings with geometric features of candidate and
target objects to estimate the object’s 6D pose. Ultimately,
WSGS uses an adaptive grasping mechanism based on the
object’s compact bounding box for stable and efficient han-
dling of objects with varying shapes. Real-world experiments
validate the system’s effectiveness, achieving high accuracy in
diverse grasping tasks.
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