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Abstract
Event cameras are innovative bioinspired vision sensors that output
pixel-level brightness changes instead of standard intensity frames.
Such cameras do not suffer from motion blur and cope well with
scenes characterized by high dynamic range, which can benefit
classic computer vision tasks such as pose estimation. However,
currently developed event-based pose estimation methods either
require extra data as inputs (such as IMU data or depths) or lack
a global refinement step to alleviate accumulated drifts. To this
end, we propose the first 6-DoF pure event-based SLAM system
equipped with back-end global optimization, named GRE-SLAM
(Globally Refined Event-based SLAM). For robustness and accuracy,
first, 6-DoF motion compensation is introduced in the front-end
to prepare sharp-edged event frames and a favorable initialization
pose, mitigating unstable optimization during event registration
brought by sparsity and noise of events. Second, a novel adaptive
semi-dense depth recovery algorithm enriches front-end’s sparse
depths without additional sensors, helping establish long-term edge
alignment constraints to support global BA in the back-end. Com-
prehensive experiments on real-world datasets demonstrate that
our method can produce high-accuracy pose estimation results as
well as recover a semi-dense depth map for each Image of Warped
Events (IWE).
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1 Introduction
Unlike conventional cameras that capture full frames at a fixed
frame rate, event cameras only report the pixels that have under-
gone a significant change in brightness [25, 35], thereby reducing
redundant data and enabling more efficient processing. The output
events of this new camera are visualized in Fig. 1 for an intuitive un-
derstanding. Such asynchronous and sparse outputs enable event
cameras to exhibit several advantages over traditional cameras,
such as high temporal resolution, low power consumption, and
high dynamic range. These advantages make event cameras par-
ticularly well-suited for applications that require low latency and
high temporal precision, such as robot navigation [1], augmented
reality [34, 36], and high-speed tracking [32, 40].

In the past decade, an increasing number of researchers have
explored the use of event cameras for a key problem in robotics,
Simultaneous Localization And Mapping (SLAM) [4, 22, 29]. How-
ever, unlocking the advantages of event cameras for SLAM is very
challenging due to the fact that the outputs of event cameras are
fundamentally different from those of standard cameras. Therefore,
traditional vision algorithms cannot be directly applied to event
data and innovative SLAM techniques must be investigated.

An ideal event-based SLAM systemwould not process redundant
data to ensure computation efficiency, allowing on-board processing
in real-time. Although a few solutions to event-only-based Visual
Odometry (VO) or SLAM have been proposed, they suffer from the
following two key limitations. First, the majority of them focus on
rotation-only motion estimation [13, 20], limiting their usage in
common environments where the camera moves with 6 Degrees
of Freedom (DoF). Second, all these event-based methods estimate
the camera pose for the current set of events within a short-term
window, which can only serve as the front-end of a SLAM system.
Without a global refinement step as the back-end, the accumulated
drifts will obviously damage the system’s robustness and trajectory
accuracy.

As an attempt to fill in the above research gaps to some extent,
we proposed GRE-SLAM (Globally Refined Event-based SLAM),
a 6-DoF event-only-based SLAM system for parallel tracking and
mapping enhanced by a back-end global optimization. In summary,
our contributions are as follows:

• The first pure event-based 6-DoF SLAM system with a
full front-end and back-end structure, GRE-SLAM, is pro-
posed.
• The first event-only-based 6-DoF global optimization
module is designed, acting as the back-end of GRE-SLAM.
In this module, an adaptive semi-dense depth recovery algo-
rithm is designed to enrich the sparse depths corresponding
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Figure 1: Illustration of the event camera and its output compared to the standard camera image. (a) Event camera (DAVIS240C);
(b) Raw event data in the spatio-temporal space; (c) Accumulated events; (d) Intensity image.

to a limited number of short-term events from the front-end
through multiple camera observations at different historical
times. The output semi-dense depths help establish long-
term geometric pose constraints based on more event points
with valid 3D positions to support effective global BA.
• The accuracy and efficiency of GRE-SLAM have been corrob-
orated by extensive experiments conducted on both indoor
and outdoor environments, with pose accuracy even supe-
rior to some multi-sensor SLAM systems (i.e. VINS-Mono
and Ultimate-SLAM) in several scenes.

2 Related Work
In order to compare the different characteristics of representative
relevant methods more clearly, in Table 1, we summarize them from
the following aspects: 1) the DoF of the motion (DoF); 2) whether
depth estimation is performed (Depth); 3) the sensor configuration
(Sensor); 4) whether equipped with the back-end (BE). It can be seen
from Table 1 that our GRE-SLAM is the first pure event-based 6-DoF
SLAM system with a complete front-end and back-end structure
without additional sensors or priors.

2.1 Hybrid Event-based SLAMs
With the rapid development of multi-modal SLAM systems, re-
searchers have been attempting to introduce event cameras to these
systems to cooperate with other sensors such as regular cameras
or IMUs. According to the sensor configuration, we can mainly
divide current multi-modal event-based SLAM methods into two
categories, event-visual SLAM and event-visual-inertial SLAM.

2.1.1 Event-visual SLAM. Censi et al. [5] presented the first VO
based on an event camera plus a normal CMOS camera to provide
the absolute brightness values. Weikersdorfer et al. [38] demon-
strated the advantage of fusing an event camera with a classic
frame-based RGB-D sensor in 3D map reconstruction. In [24], an-
other low-latency visual odometry algorithm was presented for the
DAVIS sensor that employs event-based feature tracking. Features
are detected in grayscale frames and tracked asynchronously via
the event stream. These features are used for both pose optimization
and probabilistic mapping, effectively tracking the sensor’s 6-DOF
motion in natural environments. Gallego et al. [11] provided the so-
lution to the problem of accurate, low-latency tracking of an event
camera yet with a prior of a photometric depth map, comprising

intensity and depth information built via classic dense reconstruc-
tion pipelines. EDS [17] is the first method to achieve 6-DOF visual
odometry using a direct approach that integrates both events and
frames, demonstrating increased robustness and accuracy. Pellerito
et al. [28] introduced RAMP-VO, the first end-to-end learned image-
and event-based VO system, utilizing novel RAMP encoders to fuse
asynchronous events with image data, achieving faster inference
and more accurate predictions than existing methods.

2.1.2 Event-visual-inertial SLAM. Zhu et al. [43] introduced the
first algorithm that integrates an event-based tracking system with
an IMU to achieve precise 6-DoF camera pose tracking. An Extended
Kalman Filter is designed to merge feature tracks and IMU data for
an initial pose to eliminate failed tracks, effectively tracking camera
motion in challenging scenarios. USLAM [37] emerged as the first
comprehensive scheme that fuses events, standard frames, and
inertial measurements in a tightly coupled framework. This hybrid
pipeline not only improves the tracking accuracy but also unlocks
flight scenarios, which were not reachable with traditional visual-
inertial odometry, with the assistance of event sensors. Guan et al.
[15] also introduce a monocular visual-inertial odometry (VIO) for
event cameras, involving two distinct event representations based
on time surfaces to facilitate event-corner feature tracking (for
front-end incremental estimation) and matching (for loop closure
detection). PL-EVIO [14] is another robust and real-time event-
based VIO that extracts both point-based and line-based event
features for pose estimation. ESVIO [6] is an event-based stereo
visual-inertial odometry system that facilitates temporal tracking
and real-time matching between consecutive stereo event streams,
leading to reliable state estimation.

Although the above-mentioned hybrid event-included systems
show satisfactory tracking or mapping performance, they require
additional sensors/priors and cost more time to process extra data
other than events.

2.2 Pure Event-based Solutions
The special nature of event data asks for novel approaches, and
full 6-DoF motion estimation with a single event camera remains a
challenging problem. Thus quite a few related methods rely on sim-
plifying assumptions. For example, some of them assume that the
camera only performs rotational motion [7, 26, 33] while some are
based on the hypothesis of plane motion [39, 44]. As a result, these
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methods are hindered from being used in real-world applications
with complex motions or non-planar scene structures.

Kim et al. [21] utilize three decoupled probabilistic filters to
respectively estimate 6-DoF camera motion, scene logarithmic in-
tensity gradient, and scene inverse depth relative to a keyframe.
Besides, motion compensation [19, 27] is also a powerful tool for
raw data processing and pose estimation in event-based VO. Its
main motivation comes from estimating motion from events di-
rectly in 3D space (e.g. events augmented with depth), without
projecting them onto an image plane. EVO [31] is the first to track
6-DoF camera motions while recovering a 3D map of the environ-
ment in real time on a standard CPU. Based on the event-based
reconstruction work EMVS [30], it consists of two parallel mod-
ules, tracking and mapping, following the framework of PTAM [22].
However, its tracking module suffers from unsatisfactory robust-
ness and sometimes fails in practical running.

ESVO [42] maximizes spatio-temporal consistency of stereo
event data using a simple representation. The mapping module
creates a semi-dense 3D map by probabilistically fusing depth esti-
mates from multiple local viewpoints, while the tracking module
recovers the stereo pose through a registration problem linked to
themap and event data. DEVO [23] is the first monocular event-only
system that excels in many real-world benchmarks, eliminating the
need for additional sensors. DEVO sparsely tracks selected event
patches over time, utilizing a novel deep patch selection mecha-
nism tailored for event data. However, as a learning-based method,
DEVO requires posed images along with depths for training, which
takes extra effort to prepare the cumbersome training data.

Most of the above-mentioned VOs lack a global optimization
step to keep the consistency of the global trajectory, leaving room
for improvement of localization accuracy. Although there exist a
few approaches for event-based global pose optimization through
global alignment of event packets [16, 20], they are still limited to
3-DoF motion and can only produce a panorama map instead of a
scaled 3D geometric map.

3 Methodology
3.1 Framework Overview
Our GRE-SLAM is composed of two parallel threads, the front-end
and the back-end, as shown in Fig. 2. On the one hand, the front-
end receives input events and recovers the corresponding sparse
depth map for each event frame to produce a local pose using event
alignment. For more robust alignment, we utilize the effective pro-
cessing tool for event data, the motion compensation algorithm, to
provide an initialized pose and a sharper edge map. On the other
hand, in terms of the back-end, we design a two-stage event-based
global optimization scheme for better global trajectory consistency.
In detail, to prepare for the optimization, an adaptive depth fusion
module maintains a set of historical depth maps of Image ofWarped
Events (IWE) to generate a semi-dense depth map for each IWE,
which provides more event points with valid 3D positions to estab-
lish long-term pose constraints. After that, the first-stage BA-based
optimization is conducted to refine the local structure of the sliding
window. Finally, the second-stage global pose graph optimization
is employed to further eliminate the accumulated pose error. In
the following, we will introduce the front-end VO (Sec. 3.2) and

Table 1: Comparison on features of typical event-based mo-
tion estimation methods

Methods DoF Depth Sensor BE
Censi [5] 3 × event+grayscale ×

Weikersdorfer [38] 6 input event+RGB-D ×
Kueng[24] 6 ✓ event+grayscale ×
Gallego [11] 6 input event+RGB-D ×
EDS [17] 6 ✓ event+RGB ✓

RAMP-VO [28] 6 × event+grayscale ×
Zhu [43] 6 × event+IMU ×

USLAM [37] 6 ✓ event+RGB+IMU ✓
Guan [15] 6 ✓ event+grayscale+IMU ✓

PL-EVIO [14] 6 ✓ event+grayscale+IMU ✓
ESVIO [6] 6 ✓ stereo event+grayscale+IMU ✓
GAE [20] 3 × event ✓
Cook[7] 3 × event ×
Liu [26] 3 × event ×

Weikersdorfer [39] 3 × event ×
Kim [21] 6 ✓ event ×

IncEMin [27] 6 × event ×
PEME [19] 6 × event ×
EVO [31] 6 ✓ event ×

CMax-SLAM[16] 3 × event ✓
ESVO [42] 6 ✓ stereo event ×
DEVO [23] 6 × event ×
GRE-SLAM 6 ✓ event ✓

the back-end optimization, including the depth fusion module (Sec.
3.3.1) and event-based global optimization (Sec. 3.3.2) respectively.

3.2 Motion Compensated Direct VO (Front-end)
Since events naturally correspond to scene edges, a typical pure
event-based odometry, EVO [31], obtains poses by optimizing edge
alignment errors under the direct VO framework [10], [9]. Unfortu-
nately, due to the sparsity and noise of event data, EVO [31] tends
to fail when dealing with long-term sequences. Instead, to improve
the pose optimization’s robustness for long-term motions, we uti-
lize the effective motion compensation algorithm to better prepare
the event data for later VO tracking based on the direct paradigm.
Motion compensation. The motion compensation algorithm [12,
19, 27] is expected to remove blur when accumulating individual
events in a spatiotemporal neighborhood. Mathematically, each
input event, 𝑒𝑘 = (𝒙𝑘 , 𝑡𝑘 , 𝑝𝑘 ), is composed of the pixel position
𝒙𝑘 = (𝑥𝑘 , 𝑦𝑘 )𝑇 , the timestamp 𝑡𝑘 , and the polarity 𝑝𝑘 representing
the brightness changes. Let E = {𝑒𝑘 }𝑁𝑒

𝑘=1 denote a set of neighbor-
ing events within a time interval T = {𝑡𝑘 }𝑁𝑒

𝑘=1, where 𝑁𝑒 is the
event group size. We define the optimizable parameters, angular
and linear velocities of the event group, as 𝝎 ∈ R3 and 𝜽 ∈ R3,
respectively. The compensated camera motion from arbitrary time
𝑡𝑘 to the reference time 𝑡1 can be formulated by :

Δ𝑻𝐶
𝑘
=

[
𝑒𝑥𝑝𝑠𝑜 (3) (�̂�𝛿𝑡𝑘 ) 𝜽𝛿𝑡𝑘

0𝑇 1

]
, (1)

where 𝛿𝑡𝑘 is the time difference, i.e., 𝛿𝑡𝑘 = 𝑡𝑘 − 𝑡1, �̂� ∈ R3×3 is
the cross product matrix of 𝝎. 𝑒𝑥𝑝𝑠𝑜 (3) (·) refers to exponential
mapping from 𝑠𝑜 (3) to 𝑆𝑂 (3).
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Figure 2: Overview of GRE-SLAM. In GRE-SLAM, only event streams are required as inputs. The front-end estimates short-term
6-DoF camera poses using the motion compensation algorithm to provide the initialization and IWE for edge alignment. The
back-end adaptively fuses historical depths based on historical VO poses to establish long-term constraints for global trajectory
refinement using pose graph optimization.

Then each event 𝑒𝑘 in the group can be warped by the corre-
sponding Δ𝑻𝐶

𝑘
to form the IWE denoted by 𝑰𝑤𝑎𝑟𝑝 :

𝒙′
𝑘
(𝑑𝒙 ) = 𝑲−1𝑑𝒙 [𝑥𝑘 , 𝑦𝑘 , 1]𝑇 , (2)

W(𝒙𝑘 ;Δ𝑻𝐶𝑘 , 𝑑𝒙 ) = 𝝅 (Δ𝑻𝐶
𝑘

[
𝒙′
𝑘
(𝑑𝒙 )
1

]
), (3)

𝑰𝑤𝑎𝑟𝑝 (𝒙 ;Δ𝑻𝐶 , 𝑑𝒙 ) =
𝑁𝑒∑︁
𝑘=1

𝑝𝑘𝛿𝑑 (𝒙 −W(𝒙𝑘 ,Δ𝑻𝐶𝑘 , 𝑑𝒙 )), (4)

where 𝑲 ∈ R3×3 is the camera intrinsic matrix, the depth value
𝑑𝒙 is set to the median depth of the scene for efficiency as in [37].
𝛿𝑑 (·) is the Dirac delta function, 𝒙′𝑘 = [𝑥 ′

𝑘
, 𝑦′

𝑘
, 𝑧′
𝑘
]𝑇 is the inverse-

projected point from 𝒙𝑘 to the camera coordinate system and 𝝅
denotes the camera projection.

Since a sharper IWE indicates better alignment of event data, we
maximize the contrast of 𝑰𝑤𝑎𝑟𝑝 to optimize the velocities 𝝎 and 𝜽 :

maximum
𝝎,𝜽

∥𝑰𝑤𝑎𝑟𝑝 (Δ𝑻𝐶 (𝝎, 𝜽 ), 𝑑𝒙 )∥2𝐹 , (5)

where ∥ · ∥𝐹 denotes the Frobenius norm. Now, we have obtained
the motion compensated frame 𝑰𝑤𝑎𝑟𝑝 and the optimized velocities
𝝎 and 𝜽 . After this optimization, we can obtain the relative camera
pose Δ𝑻𝐶

𝑘
at any time 𝑡𝑘 ∈ [𝑡1, 𝑡𝑁𝑒

] for this event group through
Eq. 1.
Direct methods. Extending the traditional direct VO pipelines

[9, 10] to event-based VO, the geometric alignment error [31] in-
stead of the photometric error is minimized in GRE-SLAM’s front-
end. Such geometric error is constructed between two edge maps:
the accumulated event frame and the edge image of the 3D map
projected by the relative transformation Δ𝑻𝐷 denoted by 𝑴 . Since
directly accumulating events will bring motion blur, we utilize the
binary map of the compensated IWE 𝑰𝑤𝑎𝑟𝑝 , denoted by ˆ𝑰𝑤𝑎𝑟𝑝 , as
the event frame. Then we can iteratively compute the incremental
pose 𝛿𝑻𝐷 following the inverse compositional Lucas-Kanade (LK)
method [2] that minimizes:∑︁

𝒙𝑘

(𝑴 (W(𝒙𝑘 ;𝛿𝑻𝐷 , 𝑑′𝒙 )) − ˆ𝑰𝑤𝑎𝑟𝑝 (W(𝒙𝑘 ;Δ𝑻𝐷 , 𝑑′𝒙 ))2, (6)

where 𝑑′𝒙 is depth estimated by EMVS [30] instead of the median
scene depth for better accuracy, and the target Δ𝑻𝐷 will be updated
after each iteration:

Δ𝑻𝐷 ← Δ𝑻𝐷 · (𝛿𝑻 )−1 . (7)

It is worth noticing that Δ𝑻𝐷 is initialized as Δ𝑻𝐶 provided by Eq.
5 instead of the commonly used zero initialization. Thanks to the
motion compensation step, our front-end can benefit from the IWE

ˆ𝑰𝑤𝑎𝑟𝑝 without motion blur and a good initialization Δ𝑻𝐶 to enable
stable and effective pose optimization, making our GRE-SLAMmore
robust to complex motion in practice.
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Table 2: Absolute Pose Errors on translation (𝐴𝑃𝐸𝑡/𝑚 ↓) and rotation (𝐴𝑃𝐸𝑟 /◦↓) of compared methods on RPG Stereo DAVIS [41]

Method Input bin boxes desk monitor Avg.

APE𝑡 APE𝑟 APE𝑡 APE𝑟 APE𝑡 APE𝑟 APE𝑡 APE𝑟 APE𝑡 APE𝑟
ORB-SLAM3 [4] F 0.016 1.11 0.024 2.48 0.027 1.53 0.029 3.49 0.024 2.15
VINS-Mono [29] F+I 0.012 1.20 0.063 2.29 0.017 1.89 0.018 3.81 0.028 2.30

EDS [17] E+F 0.011 1.51 0.021 4.86 0.016 2.16 0.010 1.86 0.015 2.60
USLAM [37] E+F+I 0.009 3.51 0.052 2.31 0.019 3.76 0.009 4.59 0.022 3.54
IncEmin [27] E 0.015 4.18 0.021 6.49 0.025 17.46 0.017 4.32 0.020 8.11
PEME-1k [19] E 0.012 6.56 0.181 7.80 0.042 16.43 0.032 7.78 0.067 9.64
PEME-30k [19] E 0.010 5.34 0.161 7.75 0.040 13.29 0.028 7.46 0.060 8.46

EVO [31] E 0.107 30.54 0.120 5.28 0.131 37.63 0.251 28.60 0.152 25.51
GRE-SLAM (no BA) E 0.022 6.13 0.043 5.46 0.035 5.81 0.021 7.47 0.030 6.22

GRE-SLAM E 0.009 3.13 0.012 2.17 0.010 4.34 0.015 3.62 0.012 3.32

3.3 Semi-Dense Depth Assisted BA (Back-end)
3.3.1 Adaptive Depth Fusion. To ensure the accuracy of the full
6-DoF motion estimation, the quality of depth estimation is of great
necessity. However, due to the locality and the sparsity of event
points, the depth map for each IWE from the front-end generated
by EMVS [30] is also sparse, which contributes to a limited number
of valid event points that can be utilized in Eq. 6. Starting from
this point, in the back-end, we maintain a depth set storing all the
historical depths to produce a global semi-dense depth map for
each IWE adaptively.

The algorithm for fusing IWE depth maps is given in Alg. 1. We
maintain a set of fused depth maps corresponding to each IWE

ˆ𝑰
𝑤𝑎𝑟𝑝

𝑖
denoted by D. Each 𝑻𝐷

𝑘
in P is calculated by accumulating

all the past Δ𝑻𝐷 obtained from Eq. 6 and Eq. 7. For each coming
depth map 𝑫𝐿

𝑖
from the front-end, we enrich this sparse depth

map by projecting past fused depths selected from D based on
the past poses in P and filter its outliers with the compensated

ˆ𝑰
𝑤𝑎𝑟𝑝

𝑖
as the mask. When it comes to the situation where multiple

past depths are projected to the same pixel, we determine the final
depth value by comparing their adaptive weights. The adaptive
weight for each depth point is measured by the timestamp 𝑡 and
the similarity 𝑠 between its edge and the corresponding IWE. We
design this weighting strategy based on two assumptions: 1) earlier
depth points are more reliable due to fewer accumulated drifts; 2) a
reasonable depth map is supposed to capture the same edges with
the IWE.

With this adaptive depth fusing module, the output depth maps
are semi-dense, clean and globally consistent since the observa-
tions from different camera views with a long time interval can
compensate for each other. This dense map assists in global pose
optimization by providing long-term geometric constraints from
more event points.

3.3.2 Two-Stage Global Optimization. Based on the fused depthsD
integrating global geometric information, we are capable of conduct-
ing long-term global optimization with a sliding-window strategy.
For each window covering several IWEs denoted by [ ˆ𝑰

𝑤𝑎𝑟𝑝

𝑖
,

ˆ𝑰
𝑤𝑎𝑟𝑝

𝑗
],

the designed global optimization scheme consists of two steps. First,
the relative pose within a window denoted by Δ𝑻𝑊

𝑖 𝑗
is estimated

Algorithm 1 Algorithm for Fusing IWE Depths
Input: A local depth map 𝑫𝐿

𝑖
, an accumulated front-end pose 𝑻𝐷

𝑖

corresponding to the 𝑖-𝑡ℎ IWE ˆ𝑰
𝑤𝑎𝑟𝑝

𝑖
at time 𝑡

Output: The updated set of fused depths D = {𝑫𝐹
𝑘
}𝑁𝐷

𝑘=1, a set of
poses P = {𝑻𝐷

𝑘
}𝑁𝐷

𝑘=1, a set of weighted mapsM𝑤 = {𝑴𝑤
𝑘
}𝑁𝐷

𝑘=1.
1: initialized D = ∅,P = ∅,M𝑤 = ∅, 𝑁𝐷 = 0, 𝑡𝑟𝑒 𝑓 = 𝑡𝑁 = 0,

current weight map 𝑴𝑤
𝑐𝑢𝑟𝑟 = 0𝐻×𝑊

2: if D == ∅ then
3: add 𝑫𝐿

𝑖
to D, add 𝑻𝐷

𝑖
to P, add 𝑴𝑤

𝑐𝑢𝑟𝑟 toM𝑤

4: else
5: for each pixel 𝒙 in 𝑫𝐿

𝑖
do

6: 𝑠 = 𝑆𝑆𝐼𝑀 (𝑫𝐿
𝑖
, 𝑰

𝑤𝑎𝑟𝑝

𝑖
)

7: 𝑴𝑤
𝑐𝑢𝑟𝑟 (𝒙) = 𝑒𝑥𝑝 (− 𝑡−𝑡𝑟𝑒𝑓𝑡𝑁

) · 𝑠
8: for each 𝑫𝐹

𝑘
∈ D do

9: for each pixel 𝒙 in 𝑫𝐹
𝑘
do

10: 𝒙′′ = W(𝒙, 𝑻𝐷
𝑘
)

11: if 𝑫𝐿
𝑖
(𝒙′′ ) == 0 or 𝑴𝑤

𝑘
(𝒙 ) > 𝑴𝑤

𝑐𝑢𝑟𝑟 (𝒙′′ ) then
12: 𝑫𝐿

𝑖
(𝒙′′) = 𝑧𝒙′′

13: 𝑴𝑤
𝑐𝑢𝑟𝑟 (𝒙′′) = 𝑴𝑤

𝑘
(𝒙)

14: 𝑫𝐹
𝑘+1 =

ˆ𝑰
𝑤𝑎𝑟𝑝

𝑖
· 𝑫𝐿

𝑖

15: add 𝑫𝐹
𝑘+1 to D, add 𝑻𝐷

𝑖
to P, add 𝑴𝑤

𝑐𝑢𝑟𝑟 toM𝑤

16: 𝑡𝑟𝑒 𝑓 = 𝑡, 𝑡𝑁 = 𝑡𝑁 + 𝑡
17: return D,P,M𝑤

through BA based on the similar optimization objective in Eq. 6,
yet with the fused edge map 𝑴𝐹

𝑖
extracted from the fused depth

𝑫𝐹
𝑖
. Specifically, the objective to be minimized is:∑︁

𝒙𝑘

(𝑴𝐹
𝑖 (W(𝒙𝑘 ;𝛿𝑻

𝑊
𝑖 𝑗 )) −

ˆ𝑰
𝑤𝑎𝑟𝑝

𝑗
(W(𝒙𝑘 ;Δ𝑻𝑊𝑖 𝑗 ))

2, (8)

where Δ𝑻𝑊
𝑖 𝑗

is initialized with the front-end Δ𝑻𝐷
𝑖
.

The derivatives of the edge map 𝑴 to the incremental pose 𝛿𝑻
can be obtained by the chain-rule:

𝜕𝑴

𝜕𝛿𝑻
=

𝜕𝑴

𝜕W
· 𝜕W
𝜕𝛿𝑻

, (9)
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Table 3: Absolute Pose Errors on translation (𝐴𝑃𝐸𝑡/𝑚 ↓) and rotation (𝐴𝑃𝐸𝑟 /◦↓) of compared methods on DAVIS 240C [3]

Method Input shapes_6dof boxes_6dof poster_6dof hdr_boxes hdr_poster dynamic_6dof Avg.

APE𝑡 APE𝑟 APE𝑡 APE𝑟 APE𝑡 APE𝑟 APE𝑡 APE𝑟 APE𝑡 APE𝑟 APE𝑡 APE𝑟 APE𝑡 APE𝑟
ORB-SLAM3 [4] F 0.253 26.79 0.321 13.46 0.305 18.55 0.364 32.58 0.311 25.76 0.102 5.63 0.276 20.46
VINS-Mono [29] F+I 0.246 23.20 0.412 23.32 0.227 12.85 0.352 22.88 0.313 33.29 0.037 1.73 0.265 19.55
USLAM [37] E+F+I 0.344 18.09 0.497 11.52 0.288 21.35 0.275 15.71 0.275 22.66 0.313 21.42 0.332 18.46
IncEMin [27] E 0.293 20.64 0.526 39.89 0.306 15.99 0.326 17.82 0.308 29.59 0.307 20.44 0.344 24.06
PEME-1k [19] E 0.232 21.34 0.362 27.50 0.295 18.38 0.331 19.45 0.225 23.64 0.328 22.77 0.296 22.18
PEME-30k [19] E 0.204 20.08 0.354 25.51 0.266 15.47 0.298 19.41 0.221 21.62 0.314 20.68 0.276 20.46

EVO [31] E 0.210* 19.64* 0.328* 52.72* 0.252* 15.77* 0.348* 21.50* 0.239* 14.09* 0.268* 66.56* 0.274* 31.71*
GRE-SLAM (no BA) E 0.343 20.32 0.364 28.92 0.305 15.60 0.324 16.89 0.254 26.55 0.304 27.42 0.316 22.62

GRE-SLAM E 0.230 18.04 0.328 25.23 0.216 13.54 0.298 16.64 0.247 24.82 0.267 19.50 0.265 19.63

“*” means losing track in the middle of the sequences.

Table 4: Absolute Pose Errors on translation (𝐴𝑃𝐸𝑡/𝑚 ↓) and rotation (𝐴𝑃𝐸𝑟 /◦↓) of compared methods on DAVIS Depth [11]

Method Input pipe1 pipe2 bicycle Avg.

𝐴𝑃𝐸𝑡 𝐴𝑃𝐸𝑟 𝐴𝑃𝐸𝑡 𝐴𝑃𝐸𝑟 𝐴𝑃𝐸𝑡 𝐴𝑃𝐸𝑟 𝐴𝑃𝐸𝑡 𝐴𝑃𝐸𝑟

ORB-SLAM [4] F 0.015 3.35 0.021 5.89 0.050 4.74 0.029 4.66
VINS-Mono [29] F+I 0.013 4.84 0.023 5.61 0.044 4.82 0.027 5.09
USLAM [37] E+F+I 0.011 3.62 0.038 22.74 0.045 3.83 0.031 10.06
IncEMin [27] E 0.054 28.57 0.049 29.53 0.102 16.46 0.068 24.85
PEME-1k [19] E 0.032 24.53 0.047 20.38 0.087 13.49 0.055 19.47
PEME-30k [19] E 0.029 20.19 0.036 16.75 0.064 10.37 0.043 15.77

EVO [31] E 0.029* 28.38* 0.031* 27.54* 0.124* 15.97* 0.061* 23.96*
GRE-SLAM (no BA) E 0.027 14.09 0.048 15.19 0.055 12.58 0.043 13.95

GRE-SLAM E 0.026 12.83 0.035 13.77 0.032 12.43 0.031 13.01

“*” means losing track in the middle of the sequences.

where the first derivative term can be simply given by the gradient
∇𝑴 , and the latter term is calculated by :

𝜕𝑴

𝜕𝛿𝑻
=


𝑓𝑥
𝑧′
𝑘

0 −
𝑓𝑥𝑥
′
𝑘

𝑧′2
𝑘

−
𝑓𝑥𝑥
′
𝑘
𝑦′
𝑘

𝑧′2
𝑘

𝑓𝑥 (1 +
𝑥 ′2
𝑘

𝑧′2
𝑘

) −
𝑓𝑥 𝑦
′
𝑘

𝑧′
𝑘

0 𝑓𝑦

𝑧′
𝑘

−
𝑓𝑦𝑦
′
𝑘

𝑧′2
𝑘

−𝑓𝑦 (1 +
𝑦′2
𝑘

𝑧′2
𝑘

)
𝑓𝑦𝑥
′
𝑘
𝑦′
𝑘

𝑧′2
𝑘

𝑓𝑦𝑥
′
𝑘

𝑧′
𝑘

 , (10)

where 𝑓𝑥 and 𝑓𝑦 are the focal lengths of the event camera. It is
worth mentioning that, compared with EVO [31], our adaptive
fusion module can output denser depth maps. Thus, more valid
event points can be used to construct the error terms of BA for
more accurate and robust localization.

After BA, the pose graph optimization is conducted to further
refine all past poses [𝑻𝐷

𝑖
, 𝑻𝐷

𝑗
] in the sliding window with Δ𝑻𝑊

𝑖 𝑗
as

a new long-term constraint. The objective for graph optimization
within each window is :

𝑒 = 𝐿𝑜𝑔((Δ𝑻𝐷𝑖 𝑗 )
−1 ((𝑻𝐷𝑖 )

−1𝑻𝐷𝑗 ))
∨

= 𝐿𝑜𝑔((Δ𝑻𝑊𝑖 𝑗 )
−1 (Δ𝑻𝐷𝑖 · Δ𝑻

𝐷
𝑖+1 · · ·Δ𝑻

𝐷
𝑗 ))
∨ .

(11)

4 Experiments
4.1 Experimental Setup
Datasets. We evaluated our approach in terms of both tracking
accuracy and the quality of recovered depths on three public real-
world datasets where ground truth poses are available by motion
caption systems. These three datasets include RPG Stereo DAVIS

[41], DAVIS 240C [3], and DAVIS Depth [11]. The former two pro-
vide indoor sequences while the latter one covers outdoor scenes.
The sequence lengths vary from 10s to 60s, including scenes with
high dynamic range, fast motion or dynamics. All the compara-
tive experiments were conducted on the same desktop with a CPU
model of AMD Ryzen 9 5900X 12-Core Processor.
Metrics. To measure the accuracy of the estimated poses, we se-
lected two widely used metrics in SLAM, the Absolute Pose Error
(APE) on both the translational and the rotational components,
represented by 𝐴𝑃𝐸𝑡/𝑚 and 𝐴𝑃𝐸𝑟 /◦, respectively. 𝐴𝑃𝐸𝑡 is the Eu-
clidean distance between the ground truth translation and the es-
timated event camera location while 𝐴𝑃𝐸𝑟 is measured using the
angular difference between the estimated rotation and the ground
truth rotation.

4.2 Localization Accuracy
Table 2, Table 3, Table 4 report quantitative results of our GRE-
SLAM compared with other VOs/SLAMs measured by 𝐴𝑃𝐸𝑡 and
𝐴𝑃𝐸𝑟 on three datasets mentioned in Sec. 4.1, respectively. For a
more comprehensive comparison, apart from the pure event-based
VOs [19, 27, 31], we also provided the results of event-based VO
(EDS [17] for the short-duration RPG Stereo DAVIS), event-based
VIO (USLAM [37]) and classic frame-based SLAMs (ORB-SLAM
[4] and VINS-Mono [29]) for reference. The inputs from different
sensors required for each method were also given, denoted by E
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Figure 3: Comparison in both short-term and long-term tracking performance with the classic EVO [31] on the “𝑠ℎ𝑎𝑝𝑒𝑠_6𝑑𝑜 𝑓 "
scene from the DAVIS 240C [3] dataset. Blue boxes indicate 2D tracking results on the image plane while gray boxes represent
the trajectories in the 3D map. It can be seen that EVO loses tracking in the middle of the sequence while our GRE-SLAM
maintains accurate pose tracking in the long-term.

(events), F (image frames) and I (inertial measurements) for brevity.
The best results are highlighted in bold. It can be seen from these
tables that our GRE-SLAM clearly outperforms all event-only-based
competitors in almost all scenes. Also, GRE-SLAM even surpasses
some schemes with multiple sensors such as VINS-Mono [29] and
USLAM [37] in several scenes, demonstrating GRE-SLAM’s satis-
factory performance even only with an event sensor. It is worth
noticing that, in some challenging scenes, such as the HDR scenes in
Table 3 (ℎ𝑑𝑟_𝑏𝑜𝑥𝑒𝑠 andℎ𝑑𝑟_𝑝𝑜𝑠𝑡𝑒𝑟 ), all the event-based SLAMs out-
perform the non-event SLAM (ORB-SLAM and VINS-Mono), prov-
ing event cameras’ advantages in dealing with this intractable en-
vironment while frame-based cameras may be disturbed by abrupt
illumination changes.

The most relevant work to our GRE-SLAM is EVO [31] since it is
the only competitor that also recovers both 6-DoF pose and depth
from events only. However, it fails to address the full sequence in
most scenes due to its instability of direct pose optimization. In con-
trast, our motion-compensated direct VO shows clear advantages
over it both in robustness and accuracy even without BA. In terms
of qualitative results, Fig. 3 represents the visualization results of
both short-term and long-term tracking performance of EVO [31]
and our GRE-SLAM. EVO exhibits unstable tracking ability in the
short term and fails in the long-term performance, demonstrating
our GRE-SLAM’s accuracy and robustness. Also, Fig. 4 gives the
visualization of tracking results of our GRE-SLAM compared with
EVO on the “𝑝𝑖𝑝𝑒1” scene, intuitively demonstrating GRE-SLAM’s
improvement in global trajectory accuracy.

4.3 Time Efficiency
Table 5 gives the time cost of GRE-SLAM compared two other
event-based VOs also relying on motion compensation [19, 27]. The
simple yet effective design of both the front-end and the back-end
of our GRE-SLAM accounts for our high efficiency. Specifically,
our front-end provides the direct pose optimization with a good
initialization for fast convergence while the back-end fully utilizes

Figure 4: Comparison of estimated trajectories in the XYZ
view and the RPY view by EVO and our GRE-SLAM (before
EVO fails) on the outdoor “𝑝𝑖𝑝𝑒1” scene from theDAVISDepth
dataset [11].

the outputs from the front-end without extra processing of events
to save time and computational cost.

Table 5: Time cost (𝜇𝑠 ↓) to process each event on tested
datasets

Method/Dataset DAVIS 240C [3] DAVIS Depth [11] RPG Stereo DAVIS [41]
EVO[31] 17.6 18.5 16.4

IncEmin [27] 31.4 33.5 33.4
PEME-10k [19] 22.7 23.1 20.5
PEME-30k [19] 26.4 28.1 28.2
GRE-SLAM 13.7 12.1 12.7

4.4 Performance on Semi-dense Depth Recovery
Depth reconstruction is another important task in SLAM since its
quality not only influences the quality of 3D scene reconstruction
but also affects the tracking accuracy in pose estimation. Fig. 5
shows the qualitative comparison of our GRE-SLAM and EVO [31]
on typical sequences from three tested datasets. From Fig. 5, it can
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Figure 5: Qualitative comparison of depth reconstruction on three testing sequences from three datasets. Each row depicts the
pseudo-colored inverse depth maps generated by corresponding methods. It is worth mentioning that since the timestamps
of event frames formed by different methods are not completely aligned, we chose to show results with relatively close
perspectives.

be seen the depth estimation of EVO [31] is sparse and usually loses
scene details (marked with red dotted circles) or contains obvious
outliers (markedwith red dotted rectangles), whichmay cause track-
ing failure. In comparison, GRE-SLAM produces semi-dense depth
maps with satisfactory geometric structures consistent with per-
ception. Although there exist several event-based schemes aimed
at recovering dense depths [8, 18], introducing them requires con-
siderable computational time or extra sensors. Instead, GRE-SLAM
relies on the adaptive depth fusion strategy to recover more details
utilizing multiple observations from different camera views in the
past time, while maintaining high time efficiency. Also, the outliers
can be effectively filtered out by the motion-compensated mask.
What’s more, denser and more accurate depths also contribute to
the outstanding localization accuracy of GRE-SLAM during global
trajectory refinement.

5 Conclusions
In this paper, we presented the first pure event-based SLAM system
for the full 6-DoF motion with the front-end and back-end structure,
namely GRE-SLAM. Our GRE-SLAM provides a good initialization
and a sharp referenced edge map for the front-end optimization
using motion compensation, and recovers a semi-dense depth map
for each IWE in the back-end to support the global optimization to
ease accumulated drifts. A key characteristic of GRE-SLAM is that
in its back-end, it utilizes events directly by mining their geometric
and spatial information. Thus GRE-SLAM has no dependence on
additional sensors or intermediate hand-crafted features. Experi-
ments demonstrated the outperforming localization accuracy of
GRE-SLAM. Besides, on challenging HDR scenes, our GRE-SLAM
even surpasses the compared multi-modal SLAM methods inte-
grating image frames and IMU. In summary, the goal of our work

is to explore innovative SLAM techniques for long-term tracking
using the novel event camera sensor, and narrow down the gap in
tracking robustness and accuracy between pure event-based SLAM
and traditional frame-based SLAM.
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