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@@ Matrix differentiation

e Function is a vector and the variable is a scalar

£(0) = [£,(0), f,()seees £,(0)]

Definition

df {dﬂ(r) df, (¢) dfn(t)T
dt dt ~ dt T dt
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@@ Matrix differentiation

e Function is a matrix and the variable is a scalar

S () fia(O)es F10(0)
F(f) = :le(t)fzz(t)a-"afzm(t) :[fif(t)]nm
S @) [ (O)ses [ (0)
Definition _ _
df,,(¢) df,(¢)  df,, ()
dt dt = dt
aF dfz(t) dﬁ;(t),m,dfz;(f) [ df,
7 e |
df, @) df,,t) df,, (1)
| dt d ~ dt
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@@ Matrix differentiation

e Function is a scalar and the variable is a vector

F(x),x=(x,x%,,...,x, )"
Definition _ _7
a_[o oy o
dx |ox, dx, Ox, |

In a similar way,

J(X),Xx=(x,,X,,....X,)

o |\ o o
dx |ox ox, ox,
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@@3 Matrix differentiation

e Function is a vector and the variable is a vector
T T
X = [xl,xZ,...,xn] Yy = [yl(x),yZ(X),...,ym(X)]

Definition i )
aYl(X) ay1(x) a)ﬁ(x)
ox, ’ ox, T ox,
g aYz(X) ay2(X) ayz(x)
deT = ox, ox, ox,
y,x) dy,(x)  dy,(x)
- ox, ’ ox, T ox, 1

Lin ZHANG, SSE, TONGJI UNIV.



@@3 Matrix differentiation

e Function is a vector and the variable is a vector
T T
x=[x,%,..x |,y =|»(x),y,(x),...,y,(X)]
In a similar way,
a)’l(x) ayz (X) aym (x)
ox,  ox,  ox
ayl(x) ayz (X) aym (x)

=| Odx, ox,  ox,

dyT
dx

aYl(X) ayz(x) aym(x)
ox  ox 7 ox

| n n nxm

Lin ZHANG, SSE, TONGJI UNIV.




@@ Matrix differentiation

e Function is a vector and the variable is a vector

Example: o
] |
v, (X
y:{ 1 :|»Xz Xy »yl(x):xf_xzayz(x):xi+3x2
yz(x)
| A3
_a)ﬁ(x) ayz(x)—
dx,  dx, -

. 2x, 0
dx dx,  ox,

9y, (X) 9y,(X)
dx,  ox,
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(kgg)) Matrix differentiation

e Function is a scalar and the variable is a matrix

_xll X Xy,
(X)X = .le Xop *t Xy, c ™
xml xm2 o .xmn
Definition B B
R/
dr (X) ) .ajcll ox,, ox,
dX
of of If
 ox,, Ox,, Ox,,
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@@ Matrix differentiation

o Useful results

(1) x,ae R™
Then,
da’x dx'a
= a, — |
dx dx

®
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@@3 Matrix differentiation

o Useful results

o ax'x -
(2) x€ Then, I
Ay (%) :(dy(yojT
(3) y(x)e R™ , xe R™, dx dx”
(4) Ae R™ ,xe R™ Then, dAf = A
dx
TAT
(5) 4e R™" ,xe R™ Then, X =4"
dx
T
(6) Ae R™ . xe R™ Then, dXdAX =(A+A4")x
X
da'Xb

(7) Xe R™ ae R™ be R™ Then,

dX
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@@ Matrix differentiation

o Useful results
da'X'b
dX

(8) Xe R™ ae R™ be R™ Then, ba’

(9) Xe R™",Be R™ Then, d(ZXXB) =B’

(10) Xe R™", X is invertible, M :‘X‘(X_l )T
dX
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@@ Lagrange multiplier

e Single-variable function

fx) is differentiable in (a, b). At X, € (a,b), fx) achieves an

extremum 7
) _f = O
dx

e Two-variables function

fix, y) is differentiable in its domain. At (x,, J, ), f{x, )
achieves an extremum

o o

ax |(x0 yo) ay |(x0,yo)
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@@ Lagrange multiplier

e |[n general case

If f(X),X€e R™ achieves a local extremum at X, and it is
derivable at x, then x, is a stationary point of f(x), i.g.,

/AN A

XO — ° XO 9 eeey XO
ox, ox, ox,

Or in other words,

V(%) [y, =0
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'@3 Lagrange multiplier

e Lagrange multiplier is a strategy for finding all the possible
extremum points of a function subject to equality constraints

Problem: find all the possible extremum points for y = f(Xx),x€ R™!
under m constraints £, (X)=0,k=1,2,...,m

Solution: F(X;ﬂj,...,/lm)=f(X)+i/1kgk(X)

If X, is an extremum point of f(x) under constraints

A4y, Ayg-es Ay Making (x,, 4,0, Ag-es 4 o)

a stationary point of F/

Thus, by identifying the stationary points of

F, .we can get all the p055|.ble extrem.um Joseph-Louis Lagrange
points of f(x) under equality constraints| jan. 25, 1736~Apr.10, 1813
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@@ Lagrange multiplier

e Lagrange multiplier is a strategy for finding all the possible
extremum points of a function subject to equality constraints

Problem: find all the possible extremum points for y = f(Xx),x€ R™!

under m constraints & (X) =0,k=12,....m
Solution:  F(X; 4,,...4,) = [(X)+ > 4,8, ()
k=1

(Xo,ﬂm, 0) is a stationary point of /' )

OF g OF _ OF_ OF _ OF_ oF
@ " ox, "ox, oA, oA, oA -

—

at that point n + m equations!

X, is a possible extremum point of f(x) under equality constraints
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@@ Lagrange multiplier

e Example

Problem: for a given point p, = (1, 0), among all the points
lying on the line y=x, identify the one having the least

distance to p,,. The distance is , ,

J(x,»)=(x-D"+(y-0)
Now we want to find the global minimizer
of f(x, y) under the constraint

gx,y)=y—x=0

>  According to Lagrange multiplier method,
construct the Lagrange functlon

F(x,p,A) = f(x,3)+Ag(x,y)=(x=1)" + y* + A(y - x)
Find the stationary point of F(x, y,A)

Lin ZHANG, SSE, TONGJI UNIV.
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@@3 Lagrange multiplier

(OF
e Example |—=0 )

0x 2x=D)+A=0  (x=05
JOF ) b 129220  mmplyp=0.5

dy _

\x—y—O \ﬂ,:
oF _,
ey
Thus, (0.5,0.5,1) is the only - (0.5,0.5) is the only possible

stationary point of F'(x, y, A) extremum point of fx.y)

under constraints

The global minimizer of f(x.y)
under constraints exists

. 4
(0.5,0.5) is the global minimizer of f(x,y) under constraints
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&) principal Component Analysis (PCA)

e PCA: converts a set of observations of possibly
correlated variables into a set of values of linearly
uncorrelated variables called principal components

e This transformation is defined in such a way that the
first principal component has the largest possible
variance, and each succeeding component in turn has
the highest variance possible under the constraint that
it be orthogonal to (i.e., uncorrelated with) the

preceding components
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&) principal Component Analysis (PCA)

e |llustration How to find?

X , y B —
(2.5,2.4) st
(0.5, 0.7) o
(2.2,2.9)
(1.9,2.2)
(3.1, 3.0)
(2.3,2.7) I
(2.0, 1.6) o
(1.0, 1.1)
(1.5, 1.6)
(11, 09) -3 -2 -1 0 1 2 3 4 5 B
De-correlation!

Along which orientation the data points scatter most?
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&) principal Component Analysis (PCA)

e |dentify the orientation with largest variance

Suppose X contains n data points, and each data point is p-
dimensional, that is

_ pXx1 pXn
X =1{X,,X,,...X },X. € R, Xe R

Now, we want to find such a unit vector u, ,

u, = arg max(var(uTX)),ue R

Lin ZHANG, SSE, TONGJI UNIV.



&) principal Component Analysis (PCA)

e |dentify the orientation with largest variance
1 < | -
var (u'X) = — 2 (Wx—u') =D ' (x, (%, )
n—1 n—1 i

=u’'Cu (Note that: u' (x,—)=(x,— ) u )

and C= —IZ(X — 1)(x. — )" is the covariance matrix
n i=l1

Please verify that C 1s positive semidefinite. (Assignment)
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&) principal Component Analysis (PCA)

e |dentify the orientation with largest variance

Our problem is,
T . T
u, =argmaxu Cu,subject tou u=1

The Lagrange functionis F(u,A) :uTCu—/I(uTu—l)
Solve VF(u,1)=0 :
a(uTCu—l(uTu—l))

0= =2Cu—-2Au ===p Cu=Au
all l
u is C’s eigen-vector
Since,
max (Var(uTX)) = max (uTCu) = max (uT/Iu) = max (A)
Thus,
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@@3 Principal Component Analysis (PCA)

e |dentify the orientation with largest variance

Thus, u, should be the eigen-vector of C corresponding to
the largest eigen-value of C

What is another orientation u, , orthogonal to u, , and
along which the data can have the second largest variation?

Answer: it is the eigen-vector associated to the second
largest eigen-value A, of C and such a variance is A,

1 =

/
Assignment! i~ N

In some books, they say to get principal components, SVD i1s used

instead of the eigen-value decomposition. Do you know why?

Lin ZHANG, SSE, TONGJI UNIV.



&) principal Component Analysis (PCA)

e |dentify the orientation with largest variance

Results: the eigen-vectors of C forms a set of orthogonal
basis and they are referred as Principal Components of the
original data X

You can consider PCs as a set of orthogonal coordinates.
Under such a coordinate system, variables are not
correlated.
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&) principal Component Analysis (PCA)

e Express data in PCs

Suppose {u;,u,,...,u } are PCs derived from X, X € R

Then, a data point X, € R”" can be linearly represented

by {ul,uz,...,up} , and the representation coefficients are

/uf\

T
u2

T
s )
Actually, ¢; is the coordinates of x.in the new coordinate
system spanned by {u,,u,,...,u }

Lin ZHANG, SSE, TONGJI UNIV.




&) principal Component Analysis (PCA)

e Summary

X e R” is a data matrix, and each column is a data sample

Suppose X is sample-mean subtracted version of X

1 -
C=cov(X)=— XX =UzU’
n R

U= |:u19u29“‘9up:| spans a new space

Data in new space is represented as X =U’X

In new space, dimensions of

data are not correlated

Lin ZHANG, SSE, TONGJI UNIV.




&) principal Component Analysis (PCA)

e |llustration
X, [2.5 0.5221.93.123201.01.5 1.1]

(2.5,2.4) 2.4 0.7 29223.027161.11.6 09
(0.5,0.7)
(2.2,2.9) x) 5.549 5.539
COvV =

(1.9,2.2) 5.539 6.449
(3.1, 3.0)
(2.3,2.7)
(2.0, 1.6) Eigen-values = 11.5562,0.4418
(1.0, 1.1) 0 677
(1.5, 1.6) u, =

-4 U Corresponding eigen-vectors: 0715

"7 0.6779 j
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&) principal Component Analysis (PCA)

e ||lustration

B

= data points
first PG ]
second PC

3

4

Lin ZHANG, SSE, TONGJI UNIV.




&) principal Component Analysis (PCA)

e ||lustration

Coordinates of the data points in the new coordinate system

u;
newC = X
u,

0.6779 0.7352 <
—0.7352 0.6779

_(3.459 0.854 3.623 2905 4.307 3.544 2532 1.487 2.193 1.407
1 =0.211 0.107 0.348 0.094 —0.245 0.139 —0.386 0.011 —0.018 —0.199
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&) principal Component Analysis (PCA)

e ||lustration

Coordinates of the data points in the new coordinate system
Draw new(C on the plot

In such a new system,
two variables are linearly
independent!

1r

_2 1 1
-5 0 5
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&) principal Component Analysis (PCA)

e Data dimension reduction with PCA

Suppose X = {x,}",x,e€ R”, {u,}? ,u,e R” are the PCs
(uf\

uT

If all of {u,};_, are used, ¢, =] . ? X, is still p-dimensional

T
o,
If only{u,}”,,m < p are used, ¢, will be m-dimensional

That is, the dimension of the data is reduced!

Lin ZHANG, SSE, TONGJI UNIV.



&) principal Component Analysis (PCA)

e Data dimension reduction with PCA

Suppose X = {x,}/,,x, € R
C =cov(X)=UZU’

U:[ul,uz,...,um,...,u } spans a new space

p

For dimension reduction, only u,~u,, are used,
_ pxXm
Um —[ul,uz,...,um]e R

DatainU_,

X, =(U,) XeR"™

r
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&) principal Component Analysis (PCA)

e Recovering the dimension-reduction data

Suppose X, € R™ are low-dimensional representation
of the signals X e R

How to recover X , e R™" to the original p-d space?

_Xdrl9xdr29“'9xdrn_
0 O 0 |7
recover — U .
. - p—m
0o 0 0 |-
— Uder
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&) principal Component Analysis (PCA)

e ||lustration

Coordinates of the data points in the new coordinate system

0.6779 0.7352
new(C = X
—0.7352 0.6779

If only the first PC (corresponds to the largest eigen-value) is
remained

newC =(0.6779 0.7352)X
=(3.459 0.854 3.623 2.905 4.307 3.544 2.532 1.487 2.193 1.407)
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&) principal Component Analysis (PCA)

e ||lustration

6 . 6

5 5

4 4

3 3T

2 2

1 1

O o CC))

0r CC)) OO o o 1 0F o @ 000 da O

1 1

2h ! -2 H '

5 0 5 -5 0 5

All PCs are used Only 1 PCis used

Dimension reduction!
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&) principal Component Analysis (PCA)

e ||lustration

If only the first PC (corresponds to the largest eigen-value) is
remained

newC =(0.6779 0.7352)X
=(3.459 0.854 3.623 2905 4.307 3.544 2.532 1.487 2.193 1.407)

How to recover new(C to the original space? Easy

(0.6779 0.7352) newC

~ [0.6779

= 07352](3.459 0.854 3.623 2.905 4.307 3.544 2.532 1.487 2.1931.407)
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&) principal Component Analysis (PCA)

e ||lustration

B T B
5 5
4 4
e

3 © 3 %D o
2 &° 2 ©

o oo
1 ., & 1 . X
0 0
1 1
S L ! 1 1 1 L L 1 1 iy

-3 -2 -1 0 1 2 3 4 5 B -3 2 1 0 1 2 3 4 A b

Data recovered if only 1 PC used Original data
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@ Eigen-face based face recognition

e Proposed in [1]
e Key ideas

e Images in the original space are highly correlated

e So, compress them to a low-dimensional subspace that
captures key appearance characteristics of the visual DOFs

e Use PCA for estimating the sub-space (dimensionality
reduction)

e Compare two faces by projecting the images into the
subspace and measuring the Euclidean distance between
them

[1] M. Turk and A. Pentland, Eigenfaces for recognition, Journal of Cognitive
Neuroscience' 91

Lin ZHANG, SSE, TONGJI UNIV.



@ Eigen-face based face recognition

e Training period
e Step 1: prepare images {X. } for the training set
e Step 2: compute the mean image and covariance matrix

e Step 3: compute the eigen-faces (eigen-vectors) from the
covariance matrix and only keep M eigen-faces
corresponding to the largest eigenvalues; these M eigen-
faces (u,,u,,...,u,, )define the face space

e Step 4: compute the representation coefficients of each
training image X, on the M-d subspace
T
u,

T
u2

T
uM

Lin ZHANG, SSE, TONGJI UNIV.



@ Eigen-face based face recognition

e Testing period

e Step 1: project the test image onto the AM-d subspace to
get the representation coefficients

e Step 2: classify the coefficient pattern as either a known
person or as unknown (usually Euclidean distance is
used here)

Lin ZHANG, SSE, TONGJI UNIV.



@3 Eigen-face based face recognition

e One technique to perform eigen-value decomposition
to a large matrix

If each image is 100X 100, the covariance matrix Cis 10000 X 10000
It is formidable to perform PCA for a so large matrix

However the rank of the covariance matrix is limited by the number
of training examples: if there are n training examples, there will be at
most n-1 eigenvectors with non-zero eigenvalues.

Usually, the number of training examples is much smaller than the
dimensionality of the images.

Lin ZHANG, SSE, TONGJI UNIV.



@3 Eigen-face based face recognition

e One technique to perform eigen-value decomposition
to a large matrix
Principal components can be computed more easily as follows,

Let X e R”"be the matrix of preprocessed n training examples, where

each column (p-d) contains one mean-subtracted image; (p > n)
|

. . . . T
The corresponding covariance matrix is XX" e R”” - vyery large

Instead, we perform eigen-value decompnosﬁcion to X'Xe R™
X'Xv, =Av,
Pre-multiply X on both sides
XX 'Xv. = 1 Xv,

Xv, is the eigen-vector of XX’

Lin ZHANG, SSE, TONGJI UNIV.
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@@ Eigen-face based face recognition

tage

L/ T : };
AN P y
- Slans A0 Y 7‘_ 3
o 4 )
-

4 classes, 8 samples altogether

Vectorize the 8 images, and stack them into a data matrix X
Compute the eigen-faces (PCs) based on X

In this example, we retain the first 6 eigen-faces to span the sub-
space

Lin ZHANG, SSE, TONGJI UNIV.



) Eigen-face based face recognition

e Example— training stage
If reshaping in the matrix form, 6 eigen-faces appear as follows
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@ Eigen-face based face recognition

e Example— training stage

If reshaping in the matrix form, 6 eigen-faces appear as follows

o5 = 0-33u; — 0.74u, + 0.07u; — 0.24u, + 0.28u, + 0.43u,

(x-)

r-=(0.33 —-0.74 0.07 —0.24 0.28 0.43)"is the representation vector
of the 7th training image

Lin ZHANG, SSE, TONGJI UNIV.
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) Eigen-face based face recognition

JN1

e Example— testing stage

testl

t=(0.52 0.17 -0.01 —0.39 0.67 0.29)is the representation vector of

this testing image
Lin ZHANG, SSE, TONGJI UNIV.



This guy should be Lin!
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) Eigen-face based face recognition

JN1

We set threshold = 0.50

This guy does not exist in
the dataset!
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Lin ZHANG, SSE, TONGJI UNIV.



