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Matrix differentiation

• Function is a vector and the variable is a scalar
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nt f t f t f t=f

Definition
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• Function is a matrix and the variable is a scalar
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Matrix differentiation
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• Function is a scalar and the variable is a vector

1 2( ), ( , ,..., )T
nf x x x=x x

Definition

1 2

, ,...,
T

n

df f f f
d x x x

 ∂ ∂ ∂=  ∂ ∂ ∂ x

In a similar way,

1 2( ), ( , ,..., )nf x x x=x x
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, ,...,
n

df f f f
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 ∂ ∂ ∂=  ∂ ∂ ∂ x

Matrix differentiation
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• Function is a vector and the variable is a vector
[ ] [ ]1 2 1 2, ,..., , ( ), ( ),..., ( )T T

n mx x x y y y= =x y x x x
Definition
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Matrix differentiation
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• Function is a vector and the variable is a vector
[ ] [ ]1 2 1 2, ,..., , ( ), ( ),..., ( )T T

n mx x x y y y= =x y x x x
In a similar way,
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( ) ( ) ( ), ,...,

m

mT

m

n n n n m

y y y
x x x

y y y
d x x x
d

y y y
x x x

×

∂ ∂ ∂ 
 ∂ ∂ ∂
 
∂ ∂ ∂ 
 ∂ ∂ ∂=  
 
 ∂ ∂ ∂ 

∂ ∂ ∂  

x x x

x x x
y
x

x x x


Matrix differentiation
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• Function is a vector and the variable is a vector
Example:

1
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Matrix differentiation
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• Function is a scalar and the variable is a matrix
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Matrix differentiation
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• Useful results
1, n×∈x a 

,
T Td d

d d
= =a x x aa a

x x

Then,

How to prove?

(1)

Matrix differentiation
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• Useful results

1,m n nA × ×∈ ∈x (4) Then, T
dA A
d

=x
x

1,m n nA × ×∈ ∈x (5) Then,
T T

Td A A
d

=x
x

1,n n nA × ×∈ ∈x (6) Then, ( )
T

Td A A A
d

= +x x x
x

1 1, ,m n m n× × ×∈ ∈ ∈X a b  (7) Then,
T

Td
d

=a Xb ab
X

1n×∈x (2) Then, 2
Td

d
=x x x

x

Matrix differentiation

( ) ( ) TT

T

d d
d d

 =  
 

y yx x
x x(3)                      ， ，( ) 1m×∈y x  1n×∈x 
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• Useful results

,m n n mB× ×∈ ∈X  (9) Then, ( ) Td tr B B
d

=X
X

Matrix differentiation

( )1 Td
d

−=
X

X X
X

(10) ,n n×∈X X is invertible,

1 1, ,n m m n× × ×∈ ∈ ∈X a b  (8) Then,
T T

Td
d

=a X b ba
X
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Content

• Matrix Differentiation
• Lagrange Multiplier
• Principal Component Analysis
• Eigen-face based face classification
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Lagrange multiplier

• Single-variable function

f(x) is differentiable in (a, b). At                      ,  f(x) achieves an 
extremum

0 ( , )x a b∈

0
| 0x

df
dx

=

• Two-variables function

f(x, y) is differentiable in its domain. At                , f(x, y)
achieves an extremum

0 0( , )x y

0 0 0 0( , ) ( , )| 0, | 0x y x y
f f
x y

∂ ∂= =
∂ ∂
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Lagrange multiplier

• In general case
( )f xIf           ,                 achieves a local extremum at x0 and it is 

derivable at x0, then x0 is a stationary point of f(x), i.g.,

0 0 0
1 2

| 0, | 0,..., | 0
n

f f f
x x x

∂ ∂ ∂= = =
∂ ∂ ∂x x x

Or in other words,

0
( ) |f =∇ =x xx 0

1n×∈x 



Lin ZHANG, SSE, TONGJI UNIV.

Lagrange multiplier
• Lagrange multiplier is a strategy for finding all the possible

extremum points of a function subject to equality constraints
Problem: find all the possible extremum points for 1( ), ny f ×= ∈x x 
under m constraints ( ) 0, 1, 2,...,kg k m= =x

Joseph-Louis Lagrange
Jan. 25, 1736~Apr.10, 1813

If x0 is an extremum point of f(x) under constraints

Solution:

a stationary point of F
0 10 20 0( , , ..., )mλ λ λ xmaking

1
1

( ; ,..., ) ( ) ( )
m

m k k
k

F f gλ λ λ
=

= +x x x

10 20 0, ..., ,mλ λ λ∃

Thus, by identifying the stationary points of
F, we can get all the possible extremum
points of f(x) under equality constraints
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Lagrange multiplier

is a stationary point of F0 10 0( , ,..., )mλ λx

1 2 1 2

0, 0,..., 0, 0, 0,..., 0
n m

F F F F F F
x x x λ λ λ

∂ ∂ ∂ ∂ ∂ ∂= = = = = =
∂ ∂ ∂ ∂ ∂ ∂

n + m equations!at that point

• Lagrange multiplier is a strategy for finding all the possible
extremum points of a function subject to equality constraints

Problem: find all the possible extremum points for 1( ), ny f ×= ∈x x 
under m constraints ( ) 0, 1, 2,...,kg k m= =x
Solution: 1

1
( ; ,..., ) ( ) ( )

m

m k k
k

F f gλ λ λ
=

= +x x x

x0 is a possible extremum point of f(x) under equality constraints
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Lagrange multiplier

• Example
Problem: for a given point p0 = (1, 0), among all the points 
lying on the line y=x, identify the one having the least 
distance to p0.

y=x
p0 

?

The distance is 
2 2( , ) ( 1) ( 0)f x y x y= − + −

Now we want to find the global minimizer 
of f(x, y) under the constraint

( , ) 0g x y y x= − =
According to Lagrange multiplier method, 
construct the Lagrange function 

2 2( , , ) ( , ) ( , ) ( 1) ( )F x y f x y g x y x y y xλ λ λ= + = − + + −
Find the stationary point of ( , , )F x y λ
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Lagrange multiplier

• Example 0

0

0

F
x
F
y
F
λ

∂ = ∂
∂ = ∂

∂ =∂

2( 1) 0
2 0

0

x
y

x y

λ
λ

− + =
 − =
 − =

0.5
0.5
1

x
y
λ

=
 =
 =

( , , )F x y λ
(0.5, 0.5,1)Thus,                       is the only 

stationary point of 
(0.5,0.5) is the only possible

extremum point of f(x,y)
under constraints

The global minimizer of f(x,y)
under constraints exists

(0.5,0.5) is the global minimizer of f(x,y) under constraints
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Principal Component Analysis (PCA)

• PCA: converts a set of observations of possibly 
correlated variables into a set of values of linearly 
uncorrelated variables called principal components

• This transformation is defined in such a way that the 
first principal component has the largest possible 
variance, and each succeeding component in turn has 
the highest variance possible under the constraint that 
it be orthogonal to (i.e., uncorrelated with) the 
preceding components



Lin ZHANG, SSE, TONGJI UNIV.

Principal Component Analysis (PCA)

• Illustration
x  ,   y

(2.5, 2.4) 
(0.5, 0.7)
(2.2, 2.9) 
(1.9, 2.2) 
(3.1, 3.0) 
(2.3, 2.7) 
(2.0, 1.6) 
(1.0, 1.1) 
(1.5, 1.6) 
(1.1, 0.9)

Along which orientation the data points scatter most?

How to find?

De-correlation!
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Principal Component Analysis (PCA)

• Identify the orientation with largest variance
Suppose X contains n data points, and each data point is p-
dimensional, that is

1
1 2{ , ,..., }, ,p p n

n i
× ×= ∈ ∈X x x x x X 

1uNow, we want to find such a unit vector      , 

( )( ) 1
1 arg max var ,T p×= ∈

u
u u X u 
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Principal Component Analysis (PCA)

• Identify the orientation with largest variance

( ) 2

1 1

1 1var ( ) ( )( )
1 1

n n
T T T T T

i i i
i i

T

n n= =

= − = − −
− −

=

 u X u x u u x x u

u Cu

μ μ μ

where

1

1 ( )( )
1

n
T

i i
in =

= − −
− C x xμ μand                                                          is the covariance matrix

1

1 n

i
in =

= xμ

( ) ( )T T
i i− = −u x x uμ μ(Note that:                                                )

Please verify that C is positive semidefinite. (Assignment) 
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Principal Component Analysis (PCA)

• Identify the orientation with largest variance
Our problem is,

( ) ( ), 1T TF λ λ= − −u u Cu u uThe Lagrange function is 

( )( )1
2 2

T Tλ
λ

∂ − −
= = −

∂

u Cu u u
0 Cu u

u
λ=Cu u

is C’s eigen-vector  u

( )( ) ( ) ( ) ( )max var max max maxT T T λ λ= = =u X u Cu u u
Since,  

Thus,    

1 arg max , subject to 1T T=    =
u

u u Cu u u

Solve                          :( ),F λ∇ =u 0
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Principal Component Analysis (PCA)

• Identify the orientation with largest variance

Thus,      should be the eigen-vector of C corresponding to 
the largest eigen-value of C

1u

What is another orientation       , orthogonal to       , and 
along which the data can have the second largest variation?

2u 1u

Answer: it is the eigen-vector associated to the second 
largest eigen-value     of C and such a variance is 2λ 2λ

Assignment!

In some books, they say to get principal components, SVD is used 
instead of the eigen-value decomposition. Do you know why?
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Principal Component Analysis (PCA)

• Identify the orientation with largest variance

Results: the eigen-vectors of C forms a set of orthogonal 
basis and they are referred as Principal Components of the 
original data X
You can consider PCs as a set of orthogonal coordinates. 
Under such a coordinate system, variables are not 
correlated.
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Principal Component Analysis (PCA)

• Express data in PCs

Suppose                             are PCs derived from X, 1 2{ , ,..., }pu u u p n×∈X 
Then, a data point                    can be linearly represented 
by                           , and the representation coefficients are

1p
i

×∈x 
1 2{ , ,..., }pu u u

1

2

T

T

i i

T
p

 
 
 =  
 
 
 

u
u

c x

u


Actually, ci is the coordinates of xi in the new coordinate 
system spanned by 1 2{ , ,..., }pu u u
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Principal Component Analysis (PCA)

• Summary
p n×∈X  is a data matrix, and each column is a data sample

Suppose       is sample-mean subtracted version of X
1cov( )

1
T T

n
= = ≡ Σ

−
C X XX U U

1 2, ,..., p =  U u u u spans a new space

Data in new space is represented as ' T=X U X

In new space, dimensions of 
data are not correlated 

X
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Principal Component Analysis (PCA)

• Illustration
x  ,   y

(2.5, 2.4) 
(0.5, 0.7)
(2.2, 2.9) 
(1.9, 2.2) 
(3.1, 3.0) 
(2.3, 2.7) 
(2.0, 1.6) 
(1.0, 1.1) 
(1.5, 1.6) 
(1.1, 0.9)

2.5 0.5 2.2 1.9 3.1 2.3 2.0 1.0 1.5 1.1
2.4 0.7 2.9 2.2 3.0 2.7 1.6 1.1 1.6 0.9
 

=  
 

X

5.549 5.539
cov( )

5.539 6.449
 

=  
 

X

Eigen-values = 11.5562,0.4418

Corresponding eigen-vectors:
1

2

0.6779
0.7352

0.7352
0.6779

 
=  
 

− 
=  
 

u

u
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Principal Component Analysis (PCA)

• Illustration
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Principal Component Analysis (PCA)

• Illustration

1

2

0.6779 0.7352
0.7352 0.6779
3.459 0.854 3.623 2.905 4.307 3.544 2.532 1.487 2.193 1.407

0.211 0.107 0.348 0.094 0.245 0.139 0.386 0.011 0.018 0.199

T

T
newC

 
=   
 

 
 − 
 

=  − − − − − 

u
X

u

X

Coordinates of the data points in the new coordinate system
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Principal Component Analysis (PCA)

• Illustration

Draw newC on the plot
Coordinates of the data points in the new coordinate system

In such a new system, 
two variables are linearly 
independent!
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Principal Component Analysis (PCA)

• Data dimension reduction with PCA

Suppose                                      ,                               are the PCs1
1{ } ,n p

i i i
×

== ∈X x x  1
1{ } ,p p

i i i
×

= ∈u u 

If all of             are used,                          is still p-dimensional 1{ }p
i i=u

1

2

T

T

i i

T
p

 
 
 =  
 
 
 

u
u

c x

u


If only                         are used,       will be m-dimensional 1{ } ,m
i i m p= <u ic

That is, the dimension of the data is reduced!
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Principal Component Analysis (PCA)

Suppose                                      11{ } ,n p
i i i

×
== ∈X x x 

• Data dimension reduction with PCA

cov( ) T= ≡ ΣC X U U

1 2, ,..., ,...,m p =  U u u u u spans a new space

For dimension reduction, only u1~um are used,

[ ]1 2, ,..., p m
m m

×= ∈U u u u 

Data in Um ,

( )T m n
dr m

×= ∈X U X 
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Principal Component Analysis (PCA)

Suppose                       are low-dimensional representation 
of the signals                                        

• Recovering the dimension-reduction data  

p n×∈X 

How to recover                      to the original p-d space? 

m n
dr

×∈X 

m n
dr

×∈X 

1 2, ,...,
0 0 0

0 0 0

dr dr drn

recover

 
 
 =
 
 
 

x x x

X U
 p m−

m dr= U X
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Principal Component Analysis (PCA)

• Illustration
Coordinates of the data points in the new coordinate system

0.6779 0.7352
0.7352 0.6779

newC  
=  − 

X

If only the first PC (corresponds to the largest eigen-value) is 
remained 

( )
( )

0.6779 0.7352
3.459 0.854 3.623 2.905 4.307 3.544 2.532 1.487 2.193 1.407

newC =

=

X
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Principal Component Analysis (PCA)

• Illustration

All PCs are used Only 1 PC is used
Dimension reduction!
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Principal Component Analysis (PCA)

• Illustration
If only the first PC (corresponds to the largest eigen-value) is 
remained 

( )
( )

0.6779 0.7352
3.459 0.854 3.623 2.905 4.307 3.544 2.532 1.487 2.193 1.407

newC =

=

X

How to recover newC to the original space? Easy 
( )

( )

0.6779 0.7352

0.6779
3.459 0.854 3.623 2.905 4.307 3.544 2.532 1.487 2.1931.407

0.7352

T newC

 
=  
 
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Principal Component Analysis (PCA)

• Illustration

Data recovered if only 1 PC used Original data
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Content
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Eigen-face based face recognition

• Proposed in [1]
• Key ideas

• Images in the original space are highly correlated
• So, compress them to a low-dimensional subspace that 

captures key appearance characteristics of the visual DOFs
• Use PCA for estimating the sub-space (dimensionality 

reduction)
• Compare two faces by projecting the images into the 

subspace and measuring the Euclidean distance between 
them

[1] M. Turk and A. Pentland, Eigenfaces for recognition, Journal of Cognitive 
Neuroscience' 91
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Eigen-face based face recognition

• Training period
• Step 1: prepare images         for the training set
• Step 2: compute the mean image and covariance matrix
• Step 3: compute the eigen-faces (eigen-vectors) from the 

covariance matrix and only keep M eigen-faces 
corresponding to the largest eigenvalues; these M eigen-
faces                           define the face space 

• Step 4: compute the representation coefficients of each 
training image      on the M-d subspace

1 2( , ,..., )Mu u u

1

2

T

T

i i

T
M

 
 
 =  
 
 
 

u
ur x

u


{ }ix

ix
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Eigen-face based face recognition

• Testing period
• Step 1: project the test image onto the M-d subspace to 

get the representation coefficients
• Step 2: classify the coefficient pattern as either a known 

person or as unknown (usually Euclidean distance is 
used here)
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Eigen-face based face recognition

• One technique to perform eigen-value decomposition 
to a large matrix

Usually, the number of training examples is much smaller than the 
dimensionality of the images.

If each image is 100×100, the covariance matrix C is 10000×10000
It is formidable to perform PCA for a so large matrix
However the rank of the covariance matrix is limited by the number 
of training examples: if there are n training examples, there will be at 
most n-1 eigenvectors with non-zero eigenvalues. 
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Eigen-face based face recognition

• One technique to perform eigen-value decomposition 
to a large matrix

Principal components can be computed more easily as follows,
Let be the matrix of preprocessed n training examples, where 
each column (p-d) contains one mean-subtracted image;

The corresponding covariance matrix is                                ; very large
1

1
T p p

n
×∈

−
XX 

Instead, we perform eigen-value decomposition to   
T

i i iλ=X Xv v
T n n×∈X X 

( )p n
p n×∈X 

Pre-multiply X on both sides   
T

i i iλ=XX Xv Xv

is the eigen-vector of iXv TXX
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Eigen-face based face recognition

• Example— training stage

4 classes, 8 samples altogether
Vectorize the 8 images, and stack them into a data matrix X
Compute the eigen-faces (PCs) based on X
In this example, we retain the first 6 eigen-faces to span the sub-
space
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Eigen-face based face recognition

• Example— training stage
If reshaping in the matrix form, 6 eigen-faces appear as follows

Ghost face!

u1 u2               u3                 u4               u5                u6
Then, each training face is projected to the learned sub-space

1

2

6

T

T

i i

T

 
 
 =  
 
 
 

u
ur x

u

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Eigen-face based face recognition

• Example— training stage
If reshaping in the matrix form, 6 eigen-faces appear as follows

= 0.33u1 – 0.74u2 + 0.07u3 – 0.24u4 + 0.28u5 + 0.43u6

r7=(0.33  –0.74  0.07  –0.24  0.28  0.43)T is the representation vector 
of the 7th training image 

(x7)
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Eigen-face based face recognition

• Example— testing stage

A new image comes, project it to the learned sub-space

= 0.52u1 + 0.17u2 - 0.01u3 – 0.39u4 + 0.67u5 - 0.29u6

t=(0.52  0.17  -0.01  –0.39  0.67  0.29)T is the representation vector of 
this testing image 

u1 u2               u3                 u4               u5                u6
1

2

6

T

T

T

testI

 
 
 =  
 
 
 

u
ut

u

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Eigen-face based face recognition

• Example— testing stage

t

1r 2r 3r 7r 8r4r 5r 6r

l2-norm based distance metric

1.62
1.57 1.70 1.43 0.22 1.18 1.54 1.26

This guy should be Lin!
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Eigen-face based face recognition

• Example— testing stage

t

1r 2r 3r 7r 8r4r 5r 6r

l2-norm based distance metric

1.34
1.36 1.85 1.60 0.92 0.65 1.66 1.43

This guy does not exist in 
the dataset!

We set threshold = 0.50
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