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Sparse representation based approach

• Motivations
• Signals are sparse in some selected domain
• It has strong physiological support
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Sparse representation based approach

• SR-based face recognition
• It was proposed in [1]
• In such a system, the choice of features is no longer 

crucial
• It is robust to occlusion and corruption

[1] J. Wright et al., Robust face recognition via sparse representation, IEEE 
Trans. PAMI, vol. 31, no. 2, 2009
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Sparse representation based approach

• Illustration

y 1,1v 1,2v 2,1v 2,2v 3,1v 3,2v 4,1v 4,2v
If training samples are abundant, y can be linearly represented 
by the training samples as 

1,1 1,1 1,2 1,2 2,1 2,1 2,2 2,2

3,1 3,1 3,2 3,2 4,1 4,1 4,2 4,2

α α α α
α α α α
= + + +

+ + + +
y v v v v

v v v v
We expect that all the coefficients are zero except 3,1 3,2,α α

training samples



Lin ZHANG, SSE, TONGJI Univ.

Sparse representation based approach

• Problem formulation
We define a matrix A for the n training samples of all k object 
classes

[ ]1 2 1,1 1,2 ,, ,..., , ,...,
kk k nA A A  = =  A v v v

Then, the linear representation of a testing sample y can be 
expressed as

0=y Ax
where 0 ,1 ,2 ,0,...,0, , ,..., ,0,...,0

i

T n
i i i nα α α = ∈ x 

is a coefficient vector whose entries are zero except those 
associated with the ith class 
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Sparse representation based approach
This motivates us to seek the most sparsest solution to                   
, solving the following optimization problem: 

=y Ax

0 0 2arg min , . .,s t ε= − ≤
x

x x Ax y

where        denotes the l0-norm, which counts the number of 
non-zero entries in a vector.

0⋅

(1)

However, solving (1) is a NP-hard problem, though some 
approximation solutions can be found efficiently.

Thus, usually, (1) can be rewritten as a l1-norm minimization 
problem
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Sparse representation based approach
If the solution x0 is sparse enough, the solution of l0-
minimization problem is equal to the solution to the following l1-
norm minimization problem:

0 1 2arg min , . .,s t ε= − ≤
x

x x Ax y (1)

The above minimization problem could be solved in polynomial 
time by standard linear programming methods.
There is an equivalent form for (1)

2
0 2 1arg min 0λ λ= − + >

x
x y Ax x ， (2)

Several different methods for solving l1-norm minimization 
problem in the literature, such as the l1-magic method (refer to 
the course website)
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Algorithm 
1. Input: a matrix of training samples

2. Normalize the columns of A to have unit l2-norm
3. Solve the l1-minimization problem

4. Compute the residuals 
5. Output: identity(y) = argminiri(y)

Sparse representation based approach

[ ]1 2, ,..., m n
kA A A ×= ∈A  for k classes; m∈y  , a test sample;

and an error tolerance 0ε >

0 1 2arg min , . .,s t ε= − ≤
x

x x Ax y

0 2( ) ( )i ir δ= −y y A x , i = {1,…,k}

For             ,                     is a new vector whose only non-zero entries 
are the entries in x that are associated with class i

n∈x  ( ) n
iδ ∈x 



Lin ZHANG, SSE, TONGJI Univ.

Sparse representation based approach

• Illustration

A valid test image. Recognition with 12×10 downsampled images as 
features. The test image y belongs to subject 1. The values of the sparse 
coefficients recovered are plotted on the right together with the two 
training examples that correspond to the two largest sparse coefficients. 
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The residuals ri(y) of a test image of subject 1 with respect to the projected 
sparse coefficients              by l1-minimization.

Sparse representation based approach

• Illustration

0( )iδ x
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Sparse representation based approach

• Summary
• It provides a novel idea for face recognition
• By solving the sparse minimization problem, the 

“position” of the big coefficients can indicate the 
category of the examined image

• It is robust to occlusion and partial corruption
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CRC_RLS

• Collaborative representation based classification with 
regularized least square was proposed in [1]

• Motivation
• SRC method is based on l1-minimization; however, l1-

minimization is time consuming. So, is it really 
necessary to solve the l1-minimization problem for face 
recognition?

• Is it l1-minimization or the collaborative representation 
that makes SRC work?

[1] L. Zhang et al., Sparse representation or collaborative representation: 
which helps face recognition? ICCV, 2011
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CRC_RLS

• Key points of CRC_RLS
• It is the collaborative representation, not the l1-norm 

minimization that makes the SRC method works well for 
face recognition

• Thus, the l1-norm regularization can be relaxed to l2-
norm regularization
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2
0 2 1arg min λ= − +

x
x y Ax x

SRC method:

CRC_RLS:
2 2

0 2 2arg min λ= − +
x

x y Ax x

(1)

(2)

CRC_RLS

(1) is not easy to solve; can be solved by iteration methods
However, (2) has a closed-form solution

( ) 1

0
T TEλ

−
= +x A A A y
can be pre-computed Can you work 

it out?
(ATA+λE) is actually positive definite

(strictly convex)
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CRC_RLS
Algorithm 
1. Input: a matrix of training samples

2. Normalize the columns of A to have unit l2-norm
3. Pre-compute
4. Code y over A

5. Compute the residuals 
6. Output: identity(y) = argminiri(y)

[ ]1 2, ,..., m n
kA A A ×= ∈A  for k classes; m∈y  , a test sample;

0 2( ) ( )i ir δ= −y y A x , i = {1,…,k}

For             ,                     is a new vector whose only non-zero entries 
are the entries in x that are associated with class i

n∈x  ( ) n
iδ ∈x 

0 =x Py

( ) 1T TEλ
−

= +P A A A
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CRC_RLS

• Illustration for CRC_RLS

1,1v 1,2v 2,1v 2,2v 3,1v 3,2v 4,1v 4,2v

y

By solving CRC_RLS,
0 [ 0.10, 0.04, 0.09,0.16,0.68,0.14,0.06,0.17]T= − − −x

1 1,1 1,2 2
( 0.10) ( 0.04) 1.14r = × − + × − − =v v y

2 2,1 2,2 2
( 0.09) (0.16) 0.93r = × − + × − =v v y

3 3,1 3,2 2
(0.68) (0.14) 0.27r = × + × − =v v y

4 4,1 4,2 2
(0.06) (0.17) 0.79r = × + × − =v v y
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CRC_RLS

• CRC_RLS vs. SRC

The coding coefficients of a query sample



Lin ZHANG, SSE, TONGJI Univ.

CRC_RLS

• CRC_RLS vs. SRC

Recognition rate and speed on the Extended Yale B database
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