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@@ Convex sets and affine sets

Definition 1: Convex set
A set (’is a convex set, if and only if Vx, € C,x, € £,V8e]0,1] , we have,
fx,+(1-0)x,€C

0x,+(1-0)x, € C 1s also called the convex combination of x, and x,

If a set 1s convex, the line segment linking any two points in that set also belongs to that set

convex not convex not convex
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/ Convex sets and affine sets

Proposition 1:

IfC, and C, are two convex sets, their intersection ¢ N () is also a convex set

aNG

An example
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@@ Convex sets and affine sets

Definition 2: Affine set

A set (1s an affine set, if and only if Vx, e C,x, € C,V6e R, we have,
ox, +(1-0)x,e C

0x,+(1-0)x, € C 1s also called the affine combination of x, and x,

If a set 1s affine, the line passing any two points in that set also belongs to that set
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/ Convex sets and affine sets

Definition 3: Affine hull

The set of all the affine combinations of points in set C is called the affine hull of C,

denoted by affC ,
affC ={6x, +(1-0)x, | x,,x, € C}

where @< R is any number

No matter whether C is affine or not, its affine hull affC is an affine set

affC is the smallest affine set that contains C; if C is an affine set, affC=C

Examples: what are the affine hulls for the following sets?

A N -
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@@ Convex sets and affine sets

For aset C c R", we can define its interior and boundary (relative toR” )
The interior of C is defined as, intC ={xe C|3&>0,B(x,¢) = C}

where B(x,e)={y ||y -x| <€}, and ||| can be any norm

The closure of C is defined as, ¢cIC ={xe R" |Ve>0,3ye C,|ly-x| < &}

The boundary of C is defined as, beC =¢lC \ intC

The set C 1s an open set if and only if intC=C

In R’, what are the interiors and boundaries for a solid sphere and a thin paper?
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Convex sets and affine sets

Definition 4: For a set £ c R”, its relative (to its affine hull) interior 1s defined
as,

relintC ={xe C|3e > 0, such that (B(x,&) NaffC) c C}

where B(x,e)={y||ly—x| < ¢}, and || can be any norm

Foraset € cR", its relative (to its affine hull) boundary is defined as,

clC \relintC

Foraset C c R",if affC =R", then relintC = intC and clC \relintC =bdC
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/ Convex sets and affine sets

Example: Consider a square in the (x,x,)- plane in R’, defined as,

C={xeR’|-1<x <1,-1<x, <l,x, =0}

Its affine hull is the (x,, x,)-plane, i.e., affC ={xe R’|x, =0]
The interior of C is empty, but its relative interior is,
relintC ={xe R’ |-1<x, <1,-1<x, <1,x, =0}
The boundary of C is itself, but its relative boundary is the wire-frame outline,

cIC \relintC = {xe R* |max {|x,],|x,|} =L x, = O}

b

Xy

e

C relintC ¢lC \relintC
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Convex functions

Definition 5: Affine function

If the function f(x):R" - R" is the sum of a linear function and a constant, it is
called an affine function, 1.e., 1t has the form,

f(X):AX+b,AE RMX”,XE RHXI,bE Rmxl
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@@ Convex functions

s
A0 > -
OIS

Definition 6: Convex function

A function f(x):R" — R is convex if its domain domf is a convex set, and if for
all x,y e dom/ and any & [0,1], we have,

of (x)+(1-0)f(y)z f(0x+(1-8)y) (Eq. 1)

Definition 7: Strictly Convex function

In Def. 6, if Eq. 1 changes to,
0f (x)+(1-0) f(y)> f(6x+(1-6)y)

and all the other conditions remain, then the
function f(x) is called strictly convex

A typical convex function in 2D
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Convex functions

Definition 8: Concave function

If -f(x) 1s a convex function, we say f(X) 1s a concave function

Definition 9: Strictly concave function

If -f(x) 1s a strictly convex function, we say f(x) is a strictly concave function
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Convex functions

Proposition 2:

A function 1s convex if and only 1f it 1s convex when restricted to any line that
intersects 1ts domain. In other words, f1s convex i1f and only if for all xe domf and
all v, the function g(¢)=f(x+#v) is convex on its domain {¢|x+¢ve dom/ }

=
>
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@@ Convex functions

Proposition 3:

The affine function 1s a convex function and also 1s a concave function.

®
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Convex functions

Proposition 4: First-order conditions to determine a convex function

Suppose f(x) 1s differentiable. Then, f(x) 1s convex if and only 1f domf is convex

d T
. £(¥)2 0+ () (y=x)

holds for all x,y€ domf

For a formal proof, refer to the textbook
A

.
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/ Convex functions

Proposition 5: First-order conditions to determine a strictly convex function

Suppose f(x) 1s differentiable. Then, f(x) is strictly convex if and only 1f domf 1s

d T
convex an fy)> 0+ (%) (y-x)

holds for all x,ye dom/

SSE, Tongji University



@@ Convex functions

Proposition 6:

Suppose that f(x) 1s a differentiable convex function. If X, 1s a stationary point of
f(x), 1.e., Vo / (x)=0, X 1s a global minimizer of f(x)

Proof:
f(x) 1s convex and differentiable, according to Prop. 4,

Vx,ye domf, f(y)Zf(x)i(Vf(x))T(y—X)

Atx=Xx,, f(y )

) X_Xof(x) ( - 0)
Since V _ WS (x)= l
2

,) mmp X, is a global minimizer of f(x)
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2. Convex functions

Proposition 7: Second-order conditions to determine a convex function

Suppose f(x) 1s twice differentiable. Then, f(x) 1s convex if and only 1f domf 1s
convex and the Hessian matrix V*f(x) is positive semidefinite for all xe domyf

W B BTN TR EAE : 5 Ax) 72 L pR L e B 7E SE0E AR5 BB B RS V2 £ (x)

NFIEE MR T )2 M R AL IRE D R AUE G domf 2SR T A B Al il
Vx edomf , FWATAITE x AbiffAT MM REIEH, A,

F(x+h)= £ (x)+h'Vf (x)+ ;hTV 7 (x)h+ O |nf})

g

Her, h=0. T2 A)NLERE, RIE prop. 4 ATH, f(x+h)>f(x)+V f(x)h. 4

é\iﬁﬁ%hwz F(x)h=0, BV 7(x) H E .



Convex functions

Proposition 7: Second-order conditions to determine a convex function

Suppose f(x) 1s twice differentiable. Then, f(x) 1s convex if and only 1f domf 1s
convex and the Hessian matrix V*f(x) is positive semidefinite for all xe domyf

ootk FATHEIER: 35 AHE 82 M IF e R v2 £ (x) B IEER
B, T Ax) AL, Vx,y edomf , IRAEZREIEITE,

F3) =7 (X)+ V£ (X)(r=x)+ 2y =x) Vo (x+1(y=x))(y %)
Hot, re[o,1] RAPTEMIFEA A LR, BT domys JyiE, ARAE S I AT 4

x+1(y—x)edomf o FRHRTUANIZEPE, AX)TEHRE SIS PO AF 5 — b OV AR KL A0 A I s

R, ) sz(x+t(y—x)) N IE R RE, )E”J%(y—x)T sz(x+t(y—x))(y—x)200 BEAELRR

BRIFERATAL f(y)2 f(x)+V f(x)(y—x) . 3 prop. 4 w51, Ax) ek
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/ Convex functions

Proposition 8: Second-order conditions to determine a strictly convex function
Suppose f(x) 1s twice differentiable. If domf 1s convex and V’f(x) 1s positive definite
for all xe domy', then £(x) 1s strictly convex

CEE
vx,y edomf , RIBFREEHEF,

1) =7 (5= £ () (y=x)+5 (3 =%) ¥ (x1(y=x)) (v -x)
Hrt, re[01] RAALEMIEAN R B, T dom/ igE, AR AR BV BT AT A
x+1(y—x)edomf o MR CHIZEAF, AXFEHIE SUINATE — KL BIREAR PR AN 1E 8 HE R
WV 7 (x4 1(y =) HIERSRE, (v —x)' V2 (x+1(y =x))(y=x) > 0 « S X BB TF45 )

T, f(y)>F(x)+V' f(x)(y-x) . R prop. S RIHL, Ax) N4 &£
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Convex functions

Proposition 8: Second-order conditions to determine a strictly convex function

Suppose f(x) 1s twice differentiable. If domf 1s convex and V’f(x) 1s positive definite
for all xe domy', then £(x) 1s strictly convex

Please note that the above condition is only a sufficient condition for a function being strictly convex

but not a necessary condition. In other words, for a strictly convex differentiable function, its Hessian
matrix may not be positive definite.
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Convex functions

Proposition 9:

Suppose that f,(x) and f,(x) are convex. Then, their pointwise maximum f(x),
defined by,

f(x) = max {f,(x), /,(x)}
with the domain domy =domy, Ndony,, is also convex.

W AX)S AX)BIE U258 domfi~ domp, RINIX AN sREE N sk, ARYE ™ ek %k
HIE X C Def. 6 ) AJ4Hl, domfi~ domp N MEE. AX)HIE I domf WARN fi(x)s fo(X)7E

Sz, B domf = domf, ndomy, o HR4E Prop. 1, MAERICHEMRIAE M4, KL domy
M. R, Vx,yedomfs VOe[0,1]16H,
S (0x+(1-0)y)=max {£,(0x+(1-6)y). /- (6x+(1-0)y)}
<max {0, (x)+(1-0) f;(y),0/, (x)+(1- e)fz(Y)}
<@max{f (x),/, (x)}+(1-g)max{f,(y). £ (y)}
=0f(x)+(1-6)f(y)
ZRE UL EEERTAL Ax) R AL
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Convex functions

Proposition 10:

Suppose that f,(x) and f,(x) are concave. Then, their pointwise minimum fx),

defined by,

with the domain domy =domy, Ndony,, is also concave.

JX) = minif,(x), /,(X);

o
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Convex functions

Proposition 11:

Suppose that f,(x), f5(X),..., f,,(X) are convex. Then, their nonnegative combination,

where @ 20(i=1,2,---,m), is also convex.

RGN
domyf = (Ydony, » 1T domyt Ak, W domyf £ — RFUMEMZ R, HR4E Prop. 1, domf s

MEE. J3hk, Vx,yedomf s VOe[0,1]H

F(0x+(1-0)) =Y 0 (0x+(1-0)y)

< ia),-(é’ﬁ(x)+(l—9)ﬁ(Y))=Hia),f,.(X)+(1_9)iwifi (¥)
=0f(x)+(1-0)1(y)
il Ax) AR AL
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Convex functions

Proposition 12:

Suppose that f,(x), f,(X),..., f,,(X) are concave. Then, their nonnegative combination,

where @ 20(i=1,2,---,m), is also concave.

o
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@@ Convex functions

Definition 10: Quadratic function

A function f(x):R" >R of the following form,

f(x)z%xTPx+qTx+r (Eq. 2)

where Pe R™ is a symmetric matrix and qe R™, is called a quadratic function

It can be verified that the Hessian matrix of f(x) in Eq. 21s V*f(x)=P

l

According to Prop. 7, if P 1s positive semidefinite, f(x) 1s convex
According to Prop. 8, if P 1s positive definite, f(X) 1s strictly convex

SSE, Tongji University
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Optimization problems

Definition 11: Optimization problem

A general optimization problem 1s expressed in the following form,

X =arg min f, (x)

X

subjectto f, (x)<0,i=1,...,m
h(x)=0,i=1,..,p
xe R™ is the optimization variable, x” is the optimal solution; £, (x): R" — R is the objective function

f; (X) 'R" - R,i=1,...,m are the inequality constraint functions

h, (X) 'R" > R,i=1,..., p are the equality constraint functions
If m=p=0, we say the problem is unconstrained

The set of points for which the objective and all constraint functions are defined,
m p
2 =(\domf, N[ |dom#,
i=0 i=l
is called the domain of the optimization problem Def. 11. —



@,

) Optimization problems

For a point xe 2, if it satisfies all the constraints /, (x) <0,i =1,...,m and/,(x)=0,i=1,..,p , we say
X is a feasible point.

If there exists at least one feasible point, we say the problem Def. 11 is feasible, otherwise it is
infeasible

The set of all feasible points is called the feasible set

If the optimal solution x* exists, it should be in the feasible set

The optimal value of the problem Def. 11 is defined as,
= min{fo (x)| f,(x)<0,i=1,...m,h (x)=0,i= 1,...,]9}
It can be easily known that,

fo (x"), if the optimal solution x* exists

v =14 +too, if the problem Def. 11 is infeasible
—oo, if the problem Def. 11 is unbounded below

SSE, Tongji University
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Optimization problems

It needs to be noted that even if the feasible set is not empty, the optimal solution of the problem

Def. 11 may not exist

Example: : :
X =argmin2Xx

X

subject to x <0

The feasible set of this problem 1s not empty, but the objective function is unbounded below and thus
the optimal solution does not exist.

SSE, Tongji University
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@@ Convex optimization problems

Definition 12: Convex optimization problem

We call the following optimization problem the convex optimization problem,
X =arg min Jo (x)

subjectto f,(x)<0,i=1,...,m
a x—b =0,i=1,.,p

where f(x) (i=0,1,...,m) 1s convex

Please make a comparison between the definitions of the general optimization problem and the

convex optimization prolem

Proposition 13:

The feasible set of a convex optimization problem is convex.

SSE, Tongji University




Convex optimization problems

As an example, the convex quadratic program is a typical convex optimization problem

Definition 13: Convex quadratic program problem

The convex quadratic program problem is expressed by,

" .1
X =argmin —x' Px+q' x+r

X

subject to Gx<h,Ge R™"

Ax=b,Ae R
where Pe R™ 1s positive semidefinite

Can you verify it is really a
convex optimization problem?

SSE, Tongji University
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/ Duality
Definition 14: Lagrangian

We define the Lagrangian /(x,o,B):R"xR"xR” — R associated with the problem
Def. 11 as,

H(x0uB)= £y (0+ Y 0 f, () + Y A (x)

where e={a,}" , p={B} , are dual variables, and dom/ = 2 xR" xR”

i=1?

Definition 15: Lagrange dual function

We define the Lagrange dual function g(o,p): R”xR?” - R of the problem Def. 11
as the minimum value of its Lagrangian over x,

xe D

g(o,B)=min/(x,0,f)= mg{fo (x)+i06~fi (X)+iﬁhi (X))

SSE, Tongji University



Proposition 14:

The Lagrange dual function is concave.

LI[“”
Def. 15 Jiri LIRA R R KL g (o p) WTARTE vl R AL

&

o,

g(aB)=min| (£ (x) /s (x) o () (x) Iy (x) I, (x) ; (%)
xe? 1

2

W g(ap) N FRIIL J“[;J|’|’~H)‘J",'J-h—‘ﬁf%i&@,l.'\(:kf&d\fl} AR A Prop. 3, i RREL
HMIPREL: SR QAL AL g (o.p) AN (g] M B R 1R B N T ARSI, R

Prop. 10 1L, g(o.B) MIMIPREL
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Duality

Proposition 15:

The Lagrange dual function yields lower bounds on the optimal value v* of the problem Def. 11, i.e.,

Forany a0 >0 and any B, g(o,pB)<v
AL Def. 11 wA Rl sL. A s JEARLIE Def 11 —A~n[7 4, HUR
WA L2 ST,

Lx)s0i=12,..m, h(x)=0,i=L2,..p

M,
>, (x)+ 2 A0 (3)<0
A,
I(%.0.6)= 7 (2)+ s (+ 2 AR (D)= £, (3)
AL

g(op)=min/(x.0.p) </ (x.a.p) <, (3)
1 O ERE M AT AT 205 BB, THRALIIIE Def 11 BEARA v 48 S A HATTAT
GRIRAHT, DT g (cB) <y

AR e B Def. 11 Aot 27tk @ pef 11 Asu[4y, W H AR

= gen, MR ”l/)\{] Q(a B)

SSE, Tongji University



Based on Prop. 15, we know that the Lagrange dual function g(o,B) yields the lower bounds for the
optimal value of the problem Def. 11. Among these lower bounds, the largest one is the most valuable.

That motivates us to solve the
following Lagrange dual problem

Definition 16: Lagrange dual problem

o,B = argmax g (a.,B)
o,B

subject too =0

The above problem is called the Lagrange dual problem of the problem Def. 11, and accordingly,
the problem Def. 11 is called the primal problem

We say a pair of dual variables (o, B) is dual feasible if they satisfy o.>0 and g(o,B)>—co

It should be noted that no matter whether the primal problem Def. 11 is a convex optimization

problem or not, its dual problem Def. 16 is a convex optimization problem!

SSE, Tongji University




Duality

Proposition 16: Weak duality

The general optimization problems (Def. 11) have the following weak duality property.
The optimal value of the dual problem is,

d" = m%xg(oc,[i), subject to o > 0

The optimal value of the primal problem (Def. 11) is,

Vo= min{f0 (x)| f,(x)<0,i=1,....m,h (x)=0,i = 1,...,p}
Based on Prop. 15, it can be known that ¢~ < v’

Definition 17: Strong duality

For an optimization problem, if its optimal value is strictly equal to the optimal value of its dual
problem, i.e., J

we say this optimization problem has the property of strong duality

*

*
=V

What are the conditions an optimization problem needs to satisfy to have strong duality?

SSE, Tongji University



Duality

Proposition 17: Slater condition

Suppose that the primal problem is convex, i.e., of the form,
X =arg min fo (x)

X

subjectto £, (x)<0,i=1,...,m
al.Tx—bl. =0,i=1,..,p
where f(x) (i=0,1,...,m) is convex. If there exists an x € relint 22 such that,
[, (x)<0,i=1,....m,h (x)=0,i=1,..., p (x1s strictly feasible)

Then, such a primal problem has strong duality.

Proposition 18: Refined Slater condition

For a convex optimization problem, if the first £ constraint functions f,, f,,..., f, are affine, the strong
duality holds provided the following weaker conditions: there is an x e relint 2 with

F(x)<0i=1k, f(x)<0i=k+1,...mh (x)=0,i=1,..,p

SSE, Tongji University




Duality

Proposition 19: Slater conditions for a convex problem whose constraint functions are all affine

If the primal problem is convex, all its constraints (both the equality constraints and the inequality
constraints) are affine, and domf, 1s open, then the Slater condition reduces to feasibility. In other
words, under such conditions, if the primal problem is feasible, it should satisfy the Slater condition
and has strong duality.

EHH .

R m 2kt =L B A ZFRLYRRE A, fo .., o BNV REL, FRAH
PR DT 5 PR Ax-b o D75 BB ST 9 R o XFE, AL B Y X3 2 Y domyfy

5 A 2R RE0E ZE S, T 2= domf, "nR" NR"---NR" =domy,, , 1M domfo 32 T4,

W 2 AR, HEAERE X R, int2=2. "5 —JjMm, BHT 2N
R" th 42, W affo=R", WHE—F Bl HET, relintZ2=int2 . WG relint2= 2 .
FAZ M BT AT, NEH 2 /0EF — A xe 2 =relint 2 1 /& B 2195 44, HI,

rongji University




Duality

Definition 18: Duality gap

Suppose that x and (o) are primal feasible and dual feasible, respectively. The duality gap associated
with x and (o,B) is defined as,

fO (X)_g(aaﬁ)

L Ld —‘———
Pl'OpOSlthIl 20: Assignment! @
— "

Suppose that x* and (a',B") are primal feasible and dual feasible respectively. If the duality gap
associated with them is O, 1.e.,

fi(x')-g(a’,p7)=0

Then, x" and (a",p") should be primal optimal and dual optimal, respectively, and the primal problem
has strong duality

SSE, Tongji University




Suppose that an optimization problem (the primal problem) has strong duality. If x* is the optimal
solution for the primal problem and (o",p") is the optimal solution for the dual problem, then we have,

folx’)=g(o",B) fi(x)=g(a',B)
=mgn(mx>+iafﬁ (X)+iﬁ:hz~(x)j =mxin[fo<x>+iafﬁ<x>+ﬁﬂ:h,-<x>j
m . p . - m . P .
Sf()(X*)+Zaiﬁ(X*)+ZIBihi(X*) :ﬁ)(X*)+Zaiﬁ(X*)+ZIBihi(X*)
< fo(x") = fo(x")

. 4

m V4
@ x"is the global minimizer of the Lagrangian /(x;a,p") = f, (x)+ Zajfi (x)+ Zﬂi*hl. (x)
i=1 i=1

0(1.*>O:>fl.(x*)=0

f(x)<0=a =0

SSE, Tongji University
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Duality

$

Proposition 21: KKT conditions for general optimization problems

Suppose that [y, fi5-s S, M5y, 1, are differentiable and the primal problem has strong duality. If
x" and (o',p") are primal optimal and dual optimal respectively, they satisfy the following so-called

KKT conditions, 7 (X) <0i=1..m (Eq.3)
h(x)=0i=1..p (Eq.4)
a 20,i=1,...,m (Eq.5)
a f, (x) =0,i=1,..,m (Eq.6)
m P
AT ACIED WA NACES I AN A (Eq.7)
i=1

SSE, Tongji University



Duality

Proposition 22: KKT conditions for convex optimization problems

Suppose the primal prqblem is' convex, .i.e., f()., fio for -ees f,, are convex and hy, h,, o hp
are affine, all its constraint functions are differentiable, and the problem satisfies Slater conditions.

Then, x, and («,.B,) are primal optimal and dual optimal, respectively, if and only if they satisfy KKT
conditions,

fl(XO)SO,izl, ,m
h(x,)=0,i=1,...,p
o, 20,i=1,...,m

m p
Vx=x0f;) (X)+ ZaOiVx:xof; (X)+ ZﬁOivx=x0hi (X) = 0
i=1 i=1

SSE, Tongji University




Proposition 22: KKT conditions for convex optimization problems

LII:.““:

R, REEUE s QR xo AT (. By ) 73l A Dt Tl ORGS0 i At Py dse D0 AR, D AT s
KKT 25410 1= O RISE ] A At 07 SR 25 Ao D) o] R0 8 o) LA it 0 7 5 SCIAN x A (e, . B, )

O3 ) A9 DL ) ARG A ) A7 e DI e EL DL (] R PY A7 20 A ek AR T 1, AR Prop. 21, x

(o, B, ) W /L KKT 261
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Proposition 22: KKT conditions for convex optimization problems

ot RIZIER: R x, M (o,.B,) HE KKT Fif, WEMNSADFEREZHAE

EBARMLE. BT x, 7 (o,.B,) BE KKT £, NFH,

fi(x,)<0i=L...m
hi(x,)=0.i=L..p
ayp z0.i=L..m

o, fi(x,)=0.i=1...m

Vi Jo (x)"'i o0,V o I (x)"‘i BoV o, 1 (x)=0
BT REE O RIE, WATH £, [ f B RS E bk, BB A TR E RS (R OEAL
0F Def. 12 ). XM KKT E445E 3 £HME, o, =0, WIHAIEEHBERE,
I[x.uG.BG)=fG(x)+ia’mﬁ(x}+iﬂmhi(x}
AFEF x BOERE (ERBEEIEEETR), B, KKT FHENRE—FRB7THRE
I(x50,4,B, ) 72 xo SbBEEE A 0, B E x0 A 1(x50,,B,) B/MER. EXEFHINES,
g(a‘ﬂ'pﬂ]=n-];in!(x'a‘ﬂ'ﬁﬂ)=I(x9'a‘9'ﬁ0)=.}‘%(x0]+200:'.ﬁ(x0)+gﬁﬁihi{XG)=I£)(XO)

Hif, RE—1TFHAEAT A(x)=0.0,f(x,)=0 IWIMEMFMS (KKT FHHEIE 2. 4

%) . XiRAATE xo Ml (. B ) &b, FHBEIFRA 0, BARE Prop.20 TTH. xoF(ay,B,) 7 HIE
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Duality

Example: Consider the following equality constrained convex quadratic program problem,

R 1
X =argmin —x' PX+q X+r

X

subject to Ax =b, A€ R
where P is positive semidefinite

The Lagrangianis /(x,B)= %xTPx +q'x+r+p" (Ax-b)

Denote the optimal solution for the primal problem by x*, and the optimal solution for the dual
problem by B

For this specific problem, the last equation in KKT conditions is, V_./(x;B")=Px +q+4"p =0

For this specific problem, the 2nd equation in KKT conditions is, 4x =b

PA"||x | |[—q )
A0 ||B b
By solving the above linear equation system, we can get both the primal optimal and dual optimal solutions
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Duality

(b)

(a) William Karush (March 1, 1917 to February 22, 1997), a mathematics professor at Northridge, California State
University; In his master's thesis, he first proposed the necessary conditions for the optimal solution of inequality
constrained problems

(b) Harold W. Kuhn (July 29, 1925 to July 2, 2014), an American mathematician at Princeton University, won the 1980
von Neumann Theory Award together with David Gale and Albert William Tucker; He acted as a math consultant in
the movie “Beautiful Mind”, which was adapted from Nash’s life in 2001

(c) Albert William Tucker (November 28, 1905 to January 25, 1995), a Canadian mathematician, has made important

contributions to topology, game theory and nonlinear programming; He had been a professor at Princeton University
in 1933 and retired in 1974
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