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定理13.6 针对凸优化问题的KKT条件

定理13.5 针对一般优化问题的KKT条件
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Convex sets and affine sets
Definition 1: Convex set

A set  is a convex set, if and only if                                           , we have,[ ]2, , 0,1θ∀ ∈ ∈ ∀ ∈1x x 

( )1 21θ θ+ ∈−x x 

( )1 21θ θ+ ∈−x x  is also called the convex combination of x1 and x2

If a set is convex, the line segment linking any two points in that set also belongs to that set

convex               not convex              not convex 
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Proposition 1: 

If and  are two convex sets, their intersection is also a convex set1 2∩ 

An example

1 2∩ 

1

2

Convex sets and affine sets
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Convex sets and affine sets
Definition 2: Affine set

A set  is an affine set, if and only if                                       , we have,2, , θ∀ ∈ ∈ ∀ ∈1x x  

( )1 21θ θ+ ∈−x x 

( )1 21θ θ+ ∈−x x  is also called the affine combination of x1 and x2

If a set is affine, the line passing any two points in that set also belongs to that set
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Convex sets and affine sets
Definition 3: Affine hull

The set of all the affine combinations of points in set  is called the affine hull of , 
denoted by aff ,

Examples: what are the affine hulls for the following sets?

( ){ }1 2 1 2| ,1θ θ= + ∈−aff x x x x  

No matter whether  is affine or not, its affine hull aff is an affine set

aff is the smallest affine set that contains ; if is an affine set, aff=

where            is any numberθ ∈
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Convex sets and affine sets
For a set              , we can define its interior and boundary (relative to        )n⊆  n
The interior of is defined as,  ( ){ }| 0, ,Bε ε= ∈ ∃ > ⊆int x x  

where                                       , and      can be any norm( ) { }|,B εε = ≤−y y xx ⋅

The closure of is defined as,  { }| 0, ,n ε ε= ∈ ∀ > ∃ ∈ ≤−cl x y y x 

The boundary of is defined as,  =bc cl int   

In      , what are the interiors and boundaries for a solid sphere and a thin paper?3
The set      is an open set if and only if  =int 
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Convex sets and affine sets
Definition 4: For a set              , its relative (to its affine hull) interior is defined 
as, 

n⊆ 

( )( ){ }| 0, ,such that Bε ε= ∈ ∃ >   ∩ ⊆relint x affx   

where                                       , and      can be any norm( ) { }|,B εε = ≤−y y xx ⋅

For a set              , its relative (to its affine hull) boundary is defined as, n⊆ 

\cl relint 

For a set              , if                  , then                          and n⊆  n=aff  =relint int  \ =cl relint bd  
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Convex sets and affine sets
Example: Consider a square in the               plane in      , defined as,( )1 2,x x − 3

{ }3
1 2 3| 1 1, 1 1, 0x x x= ∈ − ≤ ≤ − ≤ ≤ =x 

Its affine hull is the (x1, x2)-plane, i.e.,  { }3
3| 0x= ∈ =aff x 

The interior of  is empty, but its relative interior is,
{ }3

1 2 3| 1 1, 1 1, 0x x x= ∈ − < < − < < =relint x 

The boundary of  is itself, but its relative boundary is the wire-frame outline,

{ }{ }3
31 2\ | max , 1, 0xx x= ∈ = =cl relint x  

 relint \cl relint 
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Convex functions
Definition 5: Affine function

If the function is the sum of a linear function and a constant, it is
called an affine function, i.e., it has the form,

( ) : n mf →x  

( ) 1 1, , ,m n n mf A A × × ×= + ∈ ∈ ∈x b x bx   
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Convex functions
Definition 6: Convex function

A function is convex if its domain is a convex set, and if for
all and any , we have,

( ) : nf →x   fdom
, f∈x y dom [ ]0,1θ ∈

( ) ( ) ( ) ( )( )1 1f f fθ θθ θ+ ≥ +− −y x yx (Eq. 1)

( )( ), fx x
( )( ), fy y

A typical convex function in 2D

In Def. 6, if Eq. 1 changes to,
( ) ( ) ( ) ( )( )1 1f f fθ θθ θ+ > +− −y x yx

and all the other conditions remain, then the
function f(x) is called strictly convex

Definition 7: Strictly Convex function
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Convex functions
Definition 8: Concave function

If -f(x) is a convex function, we say f(x) is a concave function

Definition 9: Strictly concave function

If -f(x) is a strictly convex function, we say f(x) is a strictly concave function
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Convex functions
Proposition 2: 

A function is convex if and only if it is convex when restricted to any line that
intersects its domain. In other words, f is convex if and only if for all and
all v, the function g(t)=f(x+tv) is convex on its domain

f∈x dom
{ }|t t f+ ∈x v dom
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Convex functions
Proposition 3: 

The affine function is a convex function and also is a concave function.

How to prove?
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Convex functions
Proposition 4: First-order conditions to determine a convex function

Suppose f(x) is differentiable. Then, f(x) is convex if and only if domf is convex
and

holds for all
( ) ( ) ( )( ) ( )Tf f f≥ + ∇ −y y xx x

, f∈x y dom
For a formal proof, refer to the textbook
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Convex functions
Proposition 5: First-order conditions to determine a strictly convex function

Suppose f(x) is differentiable. Then, f(x) is strictly convex if and only if domf is
convex and

holds for all
( ) ( ) ( )( ) ( )Tf f f> + ∇ −y y xx x

, f∈x y dom
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Convex functions
Proposition 6: 

Suppose that f(x) is a differentiable convex function. If x0 is a stationary point of
f(x), i.e., , x0 is a global minimizer of f(x)( )

0
f=∇ =x x 0x

Proof:
f(x) is convex and differentiable, according to Prop. 4,

( ) ( ) ( )( ) ( )Tf f f≥ + ∇ −y y xx x, ,f∀ ∈x y dom

At x= x0 , ( ) ( ) ( )( ) ( )00 0
Tff f =∇≥ + −x xx y xy x

Since ( )
0
f=∇ =x x 0x

( ) ( )0f f≥ xy x0 is a global minimizer of f(x)



SSE, Tongji University

Convex functions
Proposition 7: Second-order conditions to determine a convex function

Suppose f(x) is twice differentiable. Then, f(x) is convex if and only if domf is
convex and the Hessian matrix is positive semidefinite for all( )2 f∇ x f∈x dom

prop. 4
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Convex functions
Proposition 7: Second-order conditions to determine a convex function

Suppose f(x) is twice differentiable. Then, f(x) is convex if and only if domf is
convex and the Hessian matrix is positive semidefinite for all( )2 f∇ x f∈x dom

prop. 4
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Convex functions
Proposition 8: Second-order conditions to determine a strictly convex function

Suppose f(x) is twice differentiable. If domf is convex and is positive definite
for all , then f(x) is strictly convex

( )2 f∇ x
f∈x dom

prop. 5
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Convex functions

Please note that the above condition is only a sufficient condition for a function being strictly convex
but not a necessary condition. In other words, for a strictly convex differentiable function, its Hessian
matrix may not be positive definite.

Proposition 8: Second-order conditions to determine a strictly convex function

Suppose f(x) is twice differentiable. If domf is convex and is positive definite
for all , then f(x) is strictly convex

( )2 f∇ x
f∈x dom
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Convex functions
Proposition 9:

Suppose that f1(x) and f2(x) are convex. Then, their pointwise maximum f(x),
defined by,

f(x) = max{f1(x), f2(x)}
with the domain , is also convex.1 2f f f= ∩dom dom dom

Def. 6

Prop. 1,
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Convex functions
Proposition 10:

Suppose that f1(x) and f2(x) are concave. Then, their pointwise minimum f(x),
defined by,

f(x) = min{f1(x), f2(x)}
with the domain , is also concave.1 2f f f= ∩dom dom dom

How to prove?
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Convex functions
Proposition 11:

Suppose that f1(x), f2(x),…, fm(x) are convex. Then, their nonnegative combination,

where , is also convex.

( ) ( ) ( ) ( )1 1 2 2 m mf f f fω ω ω= + + +x x x x

( )0 1,2, ,i i mω ≥  = 

Prop. 1,
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Convex functions
Proposition 12:

Suppose that f1(x), f2(x),…, fm(x) are concave. Then, their nonnegative combination,

where , is also concave.

( ) ( ) ( ) ( )1 1 2 2 m mf f f fω ω ω= + + +x x x x

( )0 1,2, ,i i mω ≥  = 

How to prove?
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Convex functions
Definition 10: Quadratic function

A function of the following form,

where is a symmetric matrix and , is called a quadratic function

( ) : nf →x  

( ) 1
2

T Tf P r= + +x x x q x
n nP ×∈ 1n×∈q 

(Eq. 2)

It can be verified that the Hessian matrix of f(x) in Eq. 2 is ( )2 f P∇ =x

According to Prop. 7, if P is positive semidefinite, f(x) is convex
According to Prop. 8, if P is positive definite, f(x) is strictly convex
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Optimization problems
Definition 11: Optimization problem

A general optimization problem is expressed in the following form,

1n×∈x 

( )

( )
( )

*
0= arg min

subject to 0, 1,...,
0, 1,...,

i

i

f

f i m
h i p

≤ =
= =

x
x x

x
x

is the optimization variable, x* is the optimal solution; ( )0 : nf →x   is the objective function
( ) : , 1,...,n

if i m→ =x   are the inequality constraint functions

( ) : , 1,...,n
ih i p→ =x   are the equality constraint functions

If m=p=0, we say the problem is unconstrained
The set of points for which the objective and all constraint functions are defined,

0 1

pm

i i
i i

f h
= =

= dom dom 

is called the domain of the optimization problem Def. 11.



SSE, Tongji University

Optimization problems
For a point , if it satisfies all the constraints and , we say
x is a feasible point.
If there exists at least one feasible point, we say the problem Def. 11 is feasible, otherwise it is
infeasible

∈x  ( ) 0, 1,...,if i m≤ =x ( ) 0, 1,...,ih i p= =x

The set of all feasible points is called the feasible set
If the optimal solution x* exists, it should be in the feasible set

The optimal value of the problem Def. 11 is defined as,
( ) ( ) ( ){ }*

0min | 0, 1,..., , 0, 1,...,i iv f f i m h i p= ≤ = = =x x x

It can be easily known that,

( )*
0

*

,
,
,

f
v


= +∞
−∞

x if the optimal solution x* exists 
if the problem Def. 11 is infeasible
if the problem Def. 11 is unbounded below
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Optimization problems

It needs to be noted that even if the feasible set is not empty, the optimal solution of the problem
Def. 11 may not exist

Example: * = arg min 2

subject to 0

x x

x  ≤
x

The feasible set of this problem is not empty, but the objective function is unbounded below and thus
the optimal solution does not exist.
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Definition 12: Convex optimization problem

We call the following optimization problem the convex optimization problem,

Convex optimization problems

( )

( )

*
0= arg min

subject to 0, 1,...,
0, 1,...,

i
T
i i

f

f i m
b i p
≤ =

− = =

x
x x

x
a x

where fi(x) (i=0,1,…,m) is convex

Please make a comparison between the definitions of the general optimization problem and the
convex optimization prolem

Proposition 13:

The feasible set of a convex optimization problem is convex.
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Convex optimization problems

Definition 13: Convex quadratic program problem

The convex quadratic program problem is expressed by,

where is positive semidefinite

As an example, the convex quadratic program is a typical convex optimization problem

* 1= arg min
2

subject to ,
,

T T

m n

p n

P r

G G
A A

×

×

+ +

≤ ∈
= ∈

x
x x x q x

x h
x b




n nP ×∈

Can you verify it is really a 
convex optimization problem?
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Duality
Definition 14: Lagrangian

We define the Lagrangian associated with the problem
Def. 11 as,

where , are dual variables, and{ } 1

m
i i

α
=

=α

( ) :, , n m pl × × →x    α β

( ) ( ) ( ) ( )0
1 1

, ,
pm

i i i i
i i

l f f hα β
= =

= + + x x x xα β

{ } 1

p
i i

β
=

=β m pl = × ×dom  

Definition 15: Lagrange dual function

We define the Lagrange dual function of the problem Def. 11
as the minimum value of its Lagrangian over x,

( ) :, m pg × →  α β

( ) ( ) ( ) ( ) ( )0
1 1

min min, , ,
pm

i i i i
i i

g l f f hα β
∈ ∈

= =

 = = + + 
 

 x x
x x x x

 
α β α β
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Duality
Proposition 14:

The Lagrange dual function is concave.

Def. 15

Prop. 3,

Prop. 10
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Duality
Proposition 15:
The Lagrange dual function yields lower bounds on the optimal value v* of the problem Def. 11, i.e.,

For any and any ,≥ 0α β ( ) *,g v≤α β
Def. 11 Def. 11

Def. 11

Def. 11 Def. 11
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Duality
Based on Prop. 15, we know that the Lagrange dual function yields the lower bounds for the
optimal value of the problem Def. 11. Among these lower bounds, the largest one is the most valuable.

( ),g α β

That motivates us to solve the
following Lagrange dual problem

Definition 16: Lagrange dual problem
( )* *

,
, arg max ,

  subject to

g=

            ≥ 0
α β

α β α β

α

The above problem is called the Lagrange dual problem of the problem Def. 11, and accordingly,
the problem Def. 11 is called the primal problem
We say a pair of dual variables is dual feasible if they satisfy and( ),α β ≥ 0α ( ),g > −∞α β

It should be noted that no matter whether the primal problem Def. 11 is a convex optimization
problem or not, its dual problem Def. 16 is a convex optimization problem!



SSE, Tongji University

Duality
Proposition 16: Weak duality
The general optimization problems (Def. 11) have the following weak duality property.
The optimal value of the dual problem is,

( )*

,
max , subject to,d g=    ≥ 0

α β
αα β

The optimal value of the primal problem (Def. 11) is,

( ) ( ) ( ){ }*
0min | 0, 1,..., , 0, 1,...,i iv f f i m h i p= ≤ = = =x x x

Based on Prop. 15, it can be known that * *d v≤

Definition 17: Strong duality
For an optimization problem, if its optimal value is strictly equal to the optimal value of its dual
problem, i.e.,

we say this optimization problem has the property of strong duality

* *d v=

What are the conditions an optimization problem needs to satisfy to have strong duality?
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Duality
Proposition 17: Slater condition
Suppose that the primal problem is convex, i.e., of the form,

Then, such a primal problem has strong duality.

( )

( )

*
0= arg min

subject to 0, 1,...,
0, 1,...,

i
T
i i

f

f i m
b i p
≤ =

− = =

x
x x

x
a x

where fi(x) (i=0,1,…,m) is convex. If there exists an such that,rel int∈x 
( ) ( )0, 1,..., , 0, 1,...,i if i m h i p< = = =x x (x is strictly feasible)

For a convex optimization problem, if the first k constraint functions f1, f2,…, fk are affine, the strong
duality holds provided the following weaker conditions: there is an withrel int∈x 

( ) ( ) ( )0, 1,..., , 0, 1,..., , 0, 1,...,i i if i k f i k m h i p≤ = < = + = =x x x

Proposition 18: Refined Slater condition
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Duality
Proposition 19: Slater conditions for a convex problem whose constraint functions are all affine

If the primal problem is convex, all its constraints (both the equality constraints and the inequality
constraints) are affine, and domf0 is open, then the Slater condition reduces to feasibility. In other
words, under such conditions, if the primal problem is feasible, it should satisfy the Slater condition
and has strong duality.

Prop. 18
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Duality

Proposition 20:

Suppose that x* and are primal feasible and dual feasible respectively. If the duality gap
associated with them is 0, i.e.,

Then, x* and should be primal optimal and dual optimal, respectively, and the primal problem
has strong duality

( )* *,α β

( ) ( )* * *
0 0,f g− =x α β

( )* *,α β

Definition 18: Duality gap

Suppose that x and are primal feasible and dual feasible, respectively. The duality gap associated
with x and is defined as,

( ) ( )0 ,f g−x α β

( ),α β
( ),α β
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Duality
Suppose that an optimization problem (the primal problem) has strong duality. If x* is the optimal
solution for the primal problem and is the optimal solution for the dual problem, then we have,( )* *,α β

( ) ( )
( ) ( ) ( )

( ) ( ) ( )

( )

* **
0

* *
0

1 1

* ** * *
0

1 1

*
0

min
pm

i i i i
i i

pm

i i i i
i i

f g

f f h

f f h

f

α β

α β

= =

= =

=

            = + + 
 

           ≤ + +

           ≤

 

 

x

x

x x x

x x x

x

α ,β ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

( )

* **
0

* *
0

1 1

* ** * *
0

1 1

*
0

min
pm

i i i i
i i

pm

i i i i
i i

f g

f f h

f f h

f

α β

α β

= =

= =

=

            = + + 
 

           = + +

           =

 

 

x

x

x x x

x x x

x

α ,β

① x* is the global minimizer of the Lagrangian ( ) ( ) ( ) ( )* ** *
0

1 1
;

pm

i i i i
i i

l f f hα β
= =

= + + x x x xα ,β

② (Complementary slackness)( )* * 0, 1, 2,...,i if i mα = =x
( )

( )

* *

**

0 0
0 0

i i

i i

f
f

α
α

 >  =


<  =

x
x
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Duality

Proposition 21: KKT conditions for general optimization problems

Suppose that are differentiable and the primal problem has strong duality. If
x* and are primal optimal and dual optimal respectively, they satisfy the following so-called
KKT conditions,

0 1 1 2, ,..., , , ,...,m pf f f h h h
( )* *,α β

( )
( )

*

*

0, 1,...,

0, 1,...,
i

i

f i m

h i p

                                                                  ≤ =

                                                                  = =

                                    

x

x

( )
( ) ( ) ( )* * *

*

* *

* *
0

1 1

0, 1,...,

0, 1,...,
i

i i

pm

i i i i
i i

i m

f i m

f f h

α

α

α β
= = =

= =

                                    ≥ =

                                                              = =

∇ + ∇ + ∇ = x x x x x x

x

x x x 0

(Eq. 3)
(Eq. 4)

(Eq. 5)
(Eq. 6)

(Eq. 7)
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Duality
Proposition 22: KKT conditions for convex optimization problems

Suppose the primal problem is convex, i.e., f0, f1, f2, …, fm are convex and h1, h2, …, hp
are affine, all its constraint functions are differentiable, and the problem satisfies Slater conditions.
Then, x0 and are primal optimal and dual optimal, respectively, if and only if they satisfy KKT
conditions,

( )
( )

0

0

0, 1,...,
0, 1,...,

i

i

f i m

h i p

                                                                   ≤ =

                                                                   = =
                                  

x
x

( )

( ) ( ) ( )
0 0 0

0

0 0

0 0 0
1 1

0, 1,...,
0, 1,...,

i

i i

pm

i i i i
i i

i m
f i m

f f h

α
α

α β= = =
= =

                                      ≥ =
                                                              = =

∇ + ∇ + ∇ = x x x x x x

x

x x x 0

( )0 0,α β
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Duality
Proposition 22: KKT conditions for convex optimization problems

Prop. 21
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Proposition 22: KKT conditions for convex optimization problems

Def. 12

Prop. 20
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Example: Consider the following equality constrained convex quadratic program problem, 

* 1= arg min
2

subject to ,

T T

p n

P r

A A ×

+ +

= ∈
x

x x x q x

x b 
where P is positive semidefinite
The Lagrangian is ( ) ( )1,

2
T T Tl P r A= + + + −x x x q x x bβ β

Denote the optimal solution for the primal problem by x*, and the optimal solution for the dual 
problem by *β

For this specific problem, the last equation in KKT conditions is,   ( )*
* * *; Tl P A

=
∇ = + +x x x x q 0β β =

For this specific problem, the 2nd equation in KKT conditions is,   *Ax b=

*

*

TP A
A

  −   
=            

x q
b0 β

By solving the above linear equation system, we can get both the primal optimal and dual optimal solutions
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(a) William Karush (March 1, 1917 to February 22, 1997), a mathematics professor at Northridge, California State
University; In his master's thesis, he first proposed the necessary conditions for the optimal solution of inequality
constrained problems

(b) Harold W. Kuhn (July 29, 1925 to July 2, 2014), an American mathematician at Princeton University, won the 1980
von Neumann Theory Award together with David Gale and Albert William Tucker; He acted as a math consultant in
the movie “Beautiful Mind”, which was adapted from Nash’s life in 2001

(c) Albert William Tucker (November 28, 1905 to January 25, 1995), a Canadian mathematician, has made important
contributions to topology, game theory and nonlinear programming; He had been a professor at Princeton University
in 1933 and retired in 1974

(a) (b)                                      (c)
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