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Linear separability

In one dimension, you can find a point separating the data
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In two dimensions, you can find a line In three dimensions, you can find a plane
separating the data separating the data
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Linear separability

When data is non-linearly separable, we cannot find a separating point, line, or plane.
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Non-linearly separable data in 1D
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Linear separability

If data is linearly separable,

for 1D case, we use a point (0D) to separate the data
for 2D case, we use a line (1D) to separate the data
for 3D case, we use a plane (2D) to separate the data

What do we use to separate the data when there are more than three dimensions?

4

Hyperplane!
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Definition 1: Hyperplane

In geometry, a hyperplane is a subspace of one dimension less than its ambient space

In d-D Euclidean space, a hyperplane 1s the set of points satisfying,

w-x+b=0
where xe R? is the point locating on that hyperplane, we R is the hyperplane’s normal
vector, and b 1s a constant

If not so straightforward, make an analogy with the cases of the line in 2D space

and the plane in the 3D Euclidean space
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g Classifying data with a hyperplane
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Given a set of data points {x;} shown as the right figure anda [ 11 T
hyperplane defined by w=(0.4, 1.0)” and b=-9 10 o S A
. . . |
Suppose the classification model is 4, ,: o[ s
+1,if w-x+b2>0 _ , 177 *“ :
h,,(x)= . (a linear classifier) T~
o o —Lif w-x+b<0 A R :
which 1s equivalent to : . 1, i
h,, (x)=sign(w-x+b) :

We can associate each x; with a label +1 or -1 oL

0 1 2 3 4 56 78 91011 12

Eg., x=(8,7)
wW-Xx+b=04*8+1.0*7-9=1.2>0 , which is positive, so &, ,(x)=+1
It means x is above the hyperplane.

It uses the position of x with respect to the hyperplane to predict x’s label
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g Classifying data with a hyperplane
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The main questions is, given a set of linearly separable data, how to find such
a hyperplane that separates the data points?

Next, we will at first introduce a simple algorithm to perform this task, i.e., perceptron
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The perceptron learning algorithm

« The goal of the perceptron algorithm is to find a hyperplane that can separate a
linearly separable data set; once the hyperplane is found, it is used to perform
binary classification; thus, it 1s a linear binary classifier (by extension, such an
architecture can also perform multiclass classification)

« It was invented by Frank Rosenblatt in 195701

(a) (b
= - THRMASF (Frank Rosenblatt, 1928%F7H11H-1971%F7H11H) BEXEVEZFR, EALERTUEZERE. 19714F, 3FTEHMPX, MMEVIFEER7ZE (Chesapeake Bay)
B —f¥ 2 AcClearwater Y BAEIAARETH/K BT, AT EFIEE TRMFFIE L, MBAASIEAMAESOAAZHREMEHNEMAY, EtkthErhAAmE “REFIR” ;
(b) AT 422Frank Rosenblatt, IEEE (BBSHEFITIEIMFES) M20045FEFFI4I% 3L T IEEE Frank Rosenblatt Award3Z, FLIRESTEMFIES KNI ESER MRS H L AR R FE.

[1] Rosenblatt, Frank (1957). "The Perceptron—a perceiving and recognizing automaton". Report 85-460-1.
Cornell Aeronautical Laboratory.

Tongji University



@@ The perceptron learning algorithm

The problem the perceptron algorithm wants to solve is,

Given a linearly separable training dataset 2={(x,,5):/x, e R’,y, e {+1,-1}} , determine
the hyperplane (w,5), V(x,,y)e 2, h,,(x,)=sign(w-Xx, +b)=y

Denote ﬁl:(ffj and w-= (b] then w'x, +b=w'x,

The hyperplane can then be represented by w
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The perceptron learning algorithm

RN B
PN
I 2 ={(x,5,) 1%, e Ry, e f+1,-1}}
B H
2w
FEHLYILE L W

misclassified_examples :={(x,.,,) e 2| h, (x,) # y,|

while misclassified examples JF %%
M misclassified examples H FEALIZEEL— N FEA (X, yim)
JRERD: v SIS FEAS B B SE AR

W= W+ X v

misclassified_examples :={(x,.y,) € 2| h, (x,) %y,

end

iR A e 4 15 2 W

W=w+y X

W=W+y X,

X

m

The updating rules for w
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The perceptron learning algorithm

* The potential drawbacks of the perceptron learning algorithm

— Since the hyperplane is randomly initialized and the misclassified example is randomly selected
when updating the parameters, after running this algorithm several times, you may get several
different separating hyperplanes

— All of these different separating hyperplanes can correctly classify the training data, however,
they are not equally good!
Example:

Which hyperplane is the best?
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@@ The perceptron learning algorithm

Given a linearly separable dataset, can we get the unique optimal
separating hyperplane?

that comes

Hard-margin SVM
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@@ Redefine the separating hyperplane
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For a linearly separable training dataset 2={(x.y,):|x, e R’,y,e{+1,-1}}_ , we have already
know what is the separating hyperplane. If w'x+5h =0 1is the separating hyperplane, it

must satisfy,
Y(x,,5, )€ D,y (WTXZ. +b) >0

It needs to be noted that, the absolute magnitude of , (WTXZ- +b) 1S not important for
classification, since,

b
(w,b) Vp >0, (%,;j represent the same hyperplane
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@@ Redefine the separating hyperplane
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For a separating hyperplane (w,b) of 2, we re-parameterize it as

(w/p,b/p)
where 0= min y, (WTXi +b). Then, for the separating hyperplane (w/ p,b/ p), we

=l,...,n
have, .
min y, (Ej xl.+é :l.minyi(wai+b):£:1
i=l,...,n p 10 plzl ..... n p

That is, for any separating hyperplane of 2, it can be parameterized as (w, b) satisfying,
V(x5 )€ D,y, (WTXZ. +b) >1

Definition 2: Separating hyperplane. For a training dataset 2={(x,»,):x, e R’,y e {+1,-1}]

a hyperplane % 1s a separating hyperplane, if and only 1f it can be represented by (w, b)
satistying, in y, (WTXZ. +b) =1

i=l,...,n
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Geometric margin

The geometric margin of a data point (x,,y,) with respect to the hyperplane (w, b) can
tell us its distance to the hyperplane and can also indicate whether it is correctly

classified

The Euclidean distance from x; to the hyperplane,

(x,—%, )| =

Based on d, we can derive the formula of the
geometric margin of (x,,,)

Do you notice the difference between the Euclidean distance and
”W” the geometric margin (from the data point to the hyperplane)?
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Geometric margin

Based on the geometric margins of the points, we can define the geometric margin of a
hyperplane

Definition 3: Geometric margin of a hyperplane. For a training dataset 2, the
geometric margin of a hyperplane w' x+5 =0 is,
¥, (WT X, +b) 1

. . . T
Y= min ¥, = min = min yl.(w xi+b)
i=1,2,..1 =12, ”W” ”W” i=1,2,..1

N A N

Why do we think #, is the best? It has the largest geometric margin!
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g Hard-margin Support Vector Machine
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For a linearly separable dataset 2, its optimal separating hyperplane (w*, b") is the one
having the largest geometric margin, 1.e.,

w,b =argmax y= argma){L min y,(w'x, +b)J = argmaxL
Jw] 2= v v

w.,b w.b
subject to min y, (w'x, +b)=1
where the constraint indicates that the desired hyperplane at first should be a separating
hyperplane
The above problem can be reformulated as,

% * . 1 T
W ,b =argmin—w'w

w.,b

subject to y. (WTXI. +b) >1,i=1,..,n
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()l Hard-margin Support Vector Machine

Definition 4: Hard-margin SVM. Suppose that the training dataset 2 1is linearly
separable. The classification approach identifying the optimal separating hyperplane

by solving the following problem i1s called the hard-margin SVM,

. o .1
W ,b =argmin—w'w
wo o 2 (Eq. 1)

subject to y, (WTXZ. +b) >1,i=1,...n

“Hard-margin” means that for every training sample, we require that its geometric
margin should be >1/||wl|

When we get the optimal separating hyperplane (w*, b%), if the sample (x,, y,) satisfies,
v (w'x, +b") =1

it is the supporting vector for the hyperplane (w", b%)
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Proposition 1: The problem for solving the hard-margin SVM (Eq. 1) 1s a convex
quadratic program problem.

w.b :argmin%WTW
o (Eq. 1)
subject to yi(w xi+b)21,i=1,...,n

b

w

O led

Denote by u =[
0a’><1 ]dxd

j . Then, wTw=uT{ }u : —yl.(wal.+b)+1=(—yl. —yl.xl.T)u+1

Eq. I can be reformulated as,

* . 1 T |:O led :|
u =argmin—u u
2 del ]dxd

u

| ) (Eq. 2)
subject to (—yl. — VX, )u +1<0,i=1,...,n

According to Def. 13 in Lecture 9, Eq. 2 1s a convex quadratic program problem
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Hard-margin Support Vector Machine

Since the problem of hard-margin SVM 1s a convex quadratic program problem, it can
be solved by using standard packages for solving convex quadratic program problems

Example:
The ‘quadprog’ routine in matlab
X = quadprog(H,f)
X = quadprog(H,f,A,b)
x = quadprog(H,f,A,b,Aeq,beq)
X = quadprog(H,f,A,b,Aeq,beq,1b,ub)
x = quadprog(H,f,A,b,Aeq,beq,1b,ub,xe)
x = quadprog(H,f,A,b,Aeq,beq,1b,ub,xe,options)
X = quadprog(problem)
[x,fval] = quadprog(___)
[x,fval,exitflag,output] = quadprog(___)
[x,fval,exitflag,output,lambda] = quadprog(___)

[wsout,fval,exitflag,output,lambda] = quadprog(H,f,A,b,Aeq,beq,1lb,ub,ws)

1588
EEEMARN R ERRAITERE.
quadprog K USRI Ve

A-x<b,
mill%_rTHx + ]"T.\' such that § Aeg - x = beq.
x = b < x < ub.

H. Af0Aeq 2581%, f. b, beq. |b. ubf1x EEE.

By exploring the special characteristics of
SVM, more efficient algorithms, based on
duality, have been designed

Tongji University



@,

@@ Hard-margin SVM solver based on duality

The primal problem,
* * . 1 T
w b :argmmzw w
e (Eq. 1)
subject to — y, (W X, +b)+1 <0,i=1,...,n

Its Lagrangian (Def. 14 of Lecture 9) 1s,

Z(W,b,a):%WTW-l-iO(i(—yi(WTXl. +b)+1)=%wTW—20{iyl.(wai +b)+zn:0(l.

i=l

where o= (a, ..., )

n

The dual problem (Def. 16 of Lecture 9) of Eq. 1 1s,

o =arg max{minl(w,b,oc)} (Eq. 3)

a w.,b

subjectto a0 = 0
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&) Hard-margin SVM solver based on duality

72 1s linearly separable

The domain of the| [The primal problem of
objective function is open | |[Eq. I 1s feasible

The primal problem of Eq. 1 is
a convex optimization problem
with all affine constraints

| |
Prop. 19 of Lect. 9

The primal problem of Eq. 1 is convex and has strong duality

\ 4

Prop. 22 of Lect. 9 1

To solve Eq. 1, we can solve its dual
problem Eq. 3 first to get " ; then,

(W* b ) and ¢, are primal optimal and dual optimal, respectively

‘ by using the KKT equations, we
derive (w",b")

(W*, b*) and ¢, satisfy KKT conditions

Tongji University




Hard—margin SVM solver based on duality

First, solve the dual problem, Eq. 3, to get the dual optimal solution o
(1) Compute mibnl(w,b,oc)

1 n n
l(W, b; OL) = EWTW — Z .y, (WTX. + b) + Z a. (about (w, b), 1t is a convex function)
i=1 i=1
Get its stationary point by solving,

(ﬁ:() W_Zn:aiyi ;=0 Wziaiyixi
) g\l’v — ) n i=1 —s ) n i=1
_:O —Zaiyl_:o Zaiyl_:
(0D = i=1

Il;vlllfll (Zayl ’j [;ajijj]_;aiyi[(;ajijjj'xi+bJ+IZ_;ai
1 n n n n
:E(Z}O@yixij-(Z;ajijj]—z:‘aiyixi-[Z;ajijj] bZayﬁZa ———ZZaa V.V XX, +Za.
= Jj= i= j=

ll]l

Tongji University
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Hard-margin SVM solver based on duality

First, solve the dual problem, Eq. 3, to get the dual optimal solution o

(2) Solve
_argmax _EZZ““%%X, . +Z“} o —argmm{ ;;aa Y.y XX, —Za}

i=l j=l1

bjectto —a<0
subject to 0. >0 ) SUbJeet o (Eq. 4)

Zn:aiyi =0 ;aiyi -
i=1

« 1
i i o :argmm{EaTro—lT Oc},
T - _ o nx1
ViXy y1y1X1TX1 ylylesz t 'ylynxlTXn o]
. r_ T T T y E 5)
. VX, _ 7| VaiXo Xy )Xo Xy o0 Y, 0, X, X, ( q'
Denote by X = ) , O=XX" = ; subjectto [ -y’ |o1< 0(n+2) 1
X — | VKX V00X, X, D, X, X, | _ || _
- 7" " = (positive semi-definite) It 1s also a convex quadratic program problem!

For solving the specific optimization problem of Eq. 4, algorithms more efficient than standard packages for
solving the general convex quadratic program problems exist, such as the sequential minimal optimization, SMO
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Hard-margin SVM solver based on duality

Second, with a”, based on KKT conditions, derive the primal optimal solution (w”, b*)

Proposition 2: Suppose that o =(¢;,a;,...,.) is the optimal solution for Eq. 3. There
exists an j, making o/ >0, and (w", b”) can be computed as,

W= iai*yixi (Eq. 6) b=y, - Zn:ai*yi (x;x;)  (Eq.7)

i=1

R 9 U Prop. 22 A0, ECAIAHE AR o BURSILT, AN RAEHR 2R )
BT (W' 0), B (w0 Flo W KT A, T (wb") IR B Rt
T4 KKT 20, B 5 R4

V_I(wha')=0 (t1)
Vb:b'l(w’b’at ) =0
a:(—yf(w’-x!.+b')+1)=0,f=1,...,n (t2)

=y (WX 4B ) +1<0i=1,00m

a, 20,i=1,..,n

[l]iﬁ t1 T, w :Za:yr_xi 0
i=l

EDIE—NTH ) of >0, TUHRIEE: WIMHERRITR), Mo =0, 1)
Bw =Y ayx =0. Fw =0 LAFRIAE o L RIE PETE, FLLHR
i=l

AR it e, > 00 MTRRATR ), 2T,

—yj(w*-xj+b')+1=0

fw =Y oy WA LRIERE Y =1, ROEAE =y, - Yy, (x,x,)-
i=1 i=1
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&) Hard-margin SVM solver based on duality

Second, with a”, based on KKT conditions, derive the primal optimal solution (w”, b*)

Proposition 2: Suppose that o =(¢;,a;,...,.) is the optimal solution for Eq. 3. There
exists an j, making o/ >0, and (w", b”) can be computed as,

W= iai*yixi (Eq. 6) b= Y _Zn:ai*yi (Xi 'Xj) (Eq.7)

i=1

With the optimal separating hyperplane (w", ), the classification decision function can
be,

ke, (X) =sign(ia:yi (x-xl.)+b*j

i=1

Actually, only a few elements in a” are greater than 0. If o >0, the associated feature vector of the training sample

(X,, ;) is a support vector to the hyperplane (w*, b*) since y. (w ' x, +b’

Tongji University



Hard-margin SVM

Example:
4 support vector machine
T T T T T @ T T T
® groupt Ny
i ® group2 % o o° * _
3.5 (O  support vector % ¢ o ° Y
separating hyperplane ° ° ® . ®
3r ° i
25F .
o\
C
Re)
e 2t :
()
£
©
1.5 .
1 -
05F .
0
0 0.5 1 1.5 2 2.5 3 3.5 4
dimension1
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@@ From hard-margin SVM to soft-margin SVM

 When the training dataset is linearly separable, the hard-margin SVM can work
perfect

« However, when the training dataset 1s not linearly separable, the hard-margin SVM
does not work since the separating hyperplane does not exist, 1.e., the following
optimization problem is not feasible,

* * . 1 T
W ,b =argmin—w w
w,b

| T (Eq. 1)
subject to y, (w X, +b) >1,i=1,...,n

How to deal with the dataset that is not linearly separable?

Let’s first consider a relatively simple case mmp

Tongji University



From hard-margin SVM to soft-margin SVM

The training dataset 2 ={(x,,,):x,e R,y e {+1,-1}] .18 not linearly separable; however, after
removing the outliers, the remaining points are linearly separable

dimension2

® group2

® groupl| |

2 2.5 3 3.5 4 4.5
dimension1

These two points are outliers;
by removing them, the dataset
would be linearly separable

Can we deal with case by extending
the hard-margin SVM?

Tongji University
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The training dataset 2={(x,.y,):/x, e R’, € {+1,—1}}:_1:1 is not linearly separable; however, after
removing the outliers, the remaining points are linearly separable

w.,b =argmin%wTW
— (Eq. 1)
subject to y, (W X, +b) >1,i=1,...,n

Relax it to,

subject to y, (WTXl. +b) >1-&,i=1,..,n,
£20,i=1,..,n,

For every hyperplane (w, b), for each training sample (x,, y;), 3& >0, making

y, (WTXZ. +b) >1-&

satisfied. Of course, smaller {¢ }are preferred, i.e., large {£ | need to be penalized

= These motivations suggest the following modified SVM model

Tongji University
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@@ Soft-margin SVM

Definition 5: Soft-margin SVM. Suppose that the training dataset 2 1is nearly
linearly separable. The classification approach identifying the optimal separating
hyperplane by solving the following problem is called the soft-margin SVM,

* * . 1 T &
w ,b =argmin—w w+C)» &
w,b,& 2 ; (Eq. 8)
subject to y, (WTXI. +b) >1-&.,i=1,...,n

£E20,i=1,..,n

« By letting C=0, £ =0,i=1,...,n, the soft-margin SVM model degenerates to the hard-margin one; the
soft-margin SVM of course can deal with the case when the training dataset 1s linearly separable; thus,
the soft-margin SVM “includes” the hard-margin SVM, 1.e., the hard-margin SVM is a special case of
the soft-margin one

» The soft-margin SVM is a linear model since its decision boundary is a hyperplane; so, it is also called
linear SVM; it can deal with case when the training dataset is nearly linear separable

Tongji University



@@ Soft-margin SVM solver based on duality

Proposition 3: The problem for solving the soft-margin SVM (Eq. 8) 1s a convex
quadratic program problem

For proof, refer to the textbook

Similar as the case of the hard-margin SVM, we can solve the soft-margin SVM
using the duality theory

Tongji University
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() Soft-margin SVM solver based on duality
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The primal problem,

b % . 1 &
w,b = argmmEWTW+Cch
w,b i=1

subject to yi(wai+b)21—§i,i:1,...,n (Eq. 8)

£E20,i=1,...,n
Its Lagrangian (Def. 14 of Lecture 9) 1s,

n

l((w,b,g),a,u)zéwTW+Ci§i +iai(—yi(wai +b)—§i +1)+Z,ul.(—§i)

i=1

The dual problem (Def. 14 of Lecture 9) of Eq. 8 1s,

o,L = argmax{min l((w,b,&),oc,u)}
o, 1L (w,0.8)
subject to ot =0

n=0

Tongji University
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@@ Soft-margin SVM solver based on duality

To solve Eq. 8, we can solve its dual problem

Eq. 9 first to get (a”,pu") ; then, by using the
KKT equations, we derive (w",5",&")

Tongji University



/ Soft-margin SVM solver based on duality

First, solve the dual problem, Eq. 9, to get the dual optimal solution (a",p")

(1) Compute min Z((w,b,&),a,u)

[((w,b,8),0,1)= —w w+CZf+Za( yi(wal.+b)—§l,+1) Zy

i=0 W_Zaiyixi:()
ow i=1
Get its stationary point by solving, |94 _, _ | _Z": oy =0
ob il
o _y |C-o—p,=0
9¢;
(rﬂ,rg)l((w,b,ﬁ),(x,u) =

= <

) (about (w

n
W= Z o)X,
i=1

Zn:aiyi =0
i=1

,b,€) , it is a convex function)

C_ai_:ui =0

1 n n n n n n n n n
» E(leaiyixij'[zlajijjJ_i_Cz;é_(Zlaiyixij'[Z;ajijj)_bzajyj_Zaié+zai_zllui§i
i= j= i= i= j= =1 =1 =1 =
1 n n n n
:_EKZ%%X:‘J(ZOK;J/;X;)"'Zai+Z(C_ai_;ui)§i Zzzaayzijl X, +ZO(
i=1 j=1 i=1 i=1

i=1 j=1
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@@ Soft-margin SVM solver based on duality

First, solve the dual problem, Eq. 9, to get the dual optimal solution (a",p")

(2) Solve
oc*,u* =argmax{—%znzzn:aiajyiiji-xj+zn:051}
. =E =l o —argmm{ ZZO{O{ V.yiX, X, —Za}
subjectto ¢, 20,i=1,...,n i=1 j=1
1 =0i=1,.,n N subjectto C> ¢, 2 0,i =1,...,n (Eq. 10)
Zaiyi =0 Zaiyi =
i=1 i=1

C—o—u=0,i=1,..,n

Make a comparison between Eq. 10 and Eq. 4, they are quite similar; Eq. 10 can also be efficiently solved by

SMO
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@@ Soft-margin SVM solver based on duality

Second, with (a", "), based on KKT conditions, derive the primal optimal solution (w",5",&’)

w=Yayx, (Eq.11)

Proposition 4: Suppose that o = (¢, ;. ...,
exists an j, making 0 < ¢} < C, then, (w", b") can be computed as,

¢, ) is the optimal solution for Eq. 9. If there

b=y, -2 @y (x-x,) (Eq.12)

JR R B B . AR KKT 2545, B R4
V“=“-t'((w,.lb,&),u:x',;.1')=w~ —ia,‘y,x, =0
A((w.b,E).a p)= Za} =0

ng:;.‘[((w’b!%)’a’u) C- ai #; =0

ﬂ:é"!.*:o,i=l,...,n
-y (w' X, +b')+1—§f. <0,i=1,...n
—& <0,i=1,...,n

a, z20,i=1,..,n

.....

FRIEE 9 & Prop.22 WA, 7E RIS R B R A (o, p") FEHL T, W RAESRF

JE I R A AT A (WL, 8T) s AT (w'Ln ) Bl (o, ") AR KKT 264, B4 (w078 ) b Ky

(t1)

(t2)

(t3)
(t4)

R TR, w =Yy, - FHETH  80<a <O, BR 2 TR L >0, b
i=l

K HE =05 BB B TR, -y (wx,+b")+1-¢ =0, WH,

b = Y, _Za:}’f (Xr‘ 'x_i)
i=1
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/ Soft-margin SVM solver based on duality

Second, with (a", "), based on KKT conditions, derive the primal optimal solution (w",5",&’)

Proposition 4: Suppose that o’ =(¢;,a;,...,Z ) is the optimal solution for Eq. 9. If there
exists an j, making 0 < ¢} < C, then, (w", b") can be computed as,

W= Zn:ai*yixi (Eq. 11) b=y, - Zn:ai*yi (x;'x;)  (Eq.12)

With the optimal separating hyperplane (w", ), the classification decision function can
be,

ke, (X) =sign(ia:yi (x-xl.)+b*j

i=1

Tongji University



Soft-margin SVM

LSRRI B )
B\ -
LJHE;L’Q\. 7 = {(xv}lr ) X € Rd‘-l"i € {-I—],—]}};
K

Iy IR B
(1) BEDIETT 25 C>0, MIETFRMEY O ]
a*:argmjn{ ZZa’a‘ﬂgJ( X, )- Za}
@ i=l j=1

subjectto C =z, 20.i=1....,n
2.4y,=0
i=1
REGHERREN G = (0,0, )-

(2) LI J+‘W —Zalx

(3 1,L3U‘i‘ Mr&Ea kT 0<a, <C 5T
b =V, - -afyf(xi'xf)
i=1
(4) s h(x):sign[Zcx:y,.(x-xf)+b'J
i=1
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Soft-margin SVM

Example: .
support vector machine
8 T T T T T T T T T T 8 T T T T T T T T T T
® group1
a L LT : o |
group S~ (O  support vector
6 - . 6 . _ separating hyperplane .
5r (] - 51 -
o0 ®
N 4 F ®% e ¢ o ,* o ° o N 4F .
S o ®oe o. s ° )
2 3l oo © L) o %o i 2 sL i
g oo °& o L ) e %o g
S 2+ °® - T 2t .
(L™ ... e o © o ° ° :
1 e®e %o 0 ) . 1t |
oo © S o %o
0 (X ) o Qo %o e %o _ 0 .
1F - -1 .
2 | | | | | | | | | | _2 | | | | | | | | | |
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
dimension1 dimension1

The training sample (x,, y,) corresponding to ¢; >0 is the support vector and it must satisfy
y, (W*Txl. +b*) =1-¢&

Tongji University



e Linear separability and hyperplanes
e The perceptron learning algorithm
e Hard-margin SVM

e Soft-margin SVM

e Kernelized SVM

e Multi-class classification with SVM
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For nonlinear classification: Mapping from low dimensional space to a high dimensional one

« When the dataset is linearly separable or nearly linearly separable, linear SVM (soft-
margin SVM) can work well

« However, when the dataset is not nearly linearly separable, the performance of linear

SVM will be poor 18 —— —
group
16 F ¥ group2 | |
A
Consider a dataset of 2D points as the right figure. You 14}
113 . . b *
cannot find a proper “separating line” that can separate ol
the two classes of data o~ A
S10r =
However, a dataset being not linearly separable in its § Al *
original space does not necessary mean that it 1s not S
. . 6 #o A A
linearly separable when being mapped to another A A
high-dimensional space! 4r
* A
2 Yo
* *
0 L 1 1 1 L 1 1 1 1
0 2 4 6 8 10 12 14 16 18
dimension1

Tongji University



For nonlinear classification: Mapping from low dimensional space to a high dimensional one

For example, using the following mapping ¢:R*> - R’,

¢(x1=x2) Z(xf,\/ixlxz,xzz)

1 8 i\‘r T T T T T T T

' 2500
A groupt ry ;
% . group
16 group2 2000 %  group2
JAN
14 + 7 1500
*
12 b 1000
o ° N
S10f A . 500
2]
qc) Y
E 8Ff | =) 0,
£
6+ ¥ A A - -500 .
JAN A
4l - -1000
¥ A 400
2r * i
N N 200
0 1 1 1 1 1 1 | 1 1
0 2 4 6 8 10 12 14 16 18 X
dimension1

The mapped data in the high-dimensional space is now linearly separable!
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For nonlinear classification: Mapping from low dimensional space to a high dimensional one

From this example, we can formulate a general idea to solve non-linear classification problems with
SVM:

Training stage

Given a training dataset 2 ={(x,,,):x, € R’,y, e {+1,—1}]  which is not linearly separable

i=1
Determine a mapping function ¢
For each x,, map it as ¢(Xl) into a high-dimensional feature space #
In 7, train a linear SVM model 17 using {¢(x,),», }; as the training data

Testing stage
Given a test sample t, which is expressed in the original low-dimensional space
Map t into 7 as ¢(t)
Classify ¢(t) using A7

How to determine ¢ for a given dataset does not have a fixed correct answer, and it may depend on experience!
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For nonlinear classification: Mapping from low dimensional space to a high dimensional one

Linear SVM: Linear SVM in high-dimensional space 7/ :

o —argmm{ ZZO{O{ ViV XX, —ZO{}

i=l j=1

When data is not
llnearly separabl

subjectto C =2 ¢, 20,i=1,...,n

Zn: &y, =0
i=1

The classification decision function,

subjectto C 2 ¢, 20,i =1,...,n

n
Z )y, =
i=1

The classification decision functio

/ where

where n (
b=y =2y b=y, = ; lo(x)4(x)))
I e ——
@ Using ¢, mapping data points to 7 | Is there a function that can implicitly return the dot
(2 Computing the dot product between two i product of two points in the high-dimensional space?
| mapped points i That is the kernel function!

________________________________________________________
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Kernel function

Definition 6: Kernel function. Suppose that ¥ 1s the original low-dimensional feature
space and 7 1s the high-dimensional feature space. If there exists a mapping,

o(x):x =7
Vx,z€ y, the function K (-,-): R’ xR — R satisfies that,

K(x,z)=¢(x) ¢(z)

Then, the function K (,-) 1s called the kernel function

With the kernel function, we do not need to explicitly define the mapping function and the high-

dimensional space!

Tongji University



Kernel function

* It needs to be noted that for a given kernel function K, the associated high-
dimensional space 7 and the mapping function ¢ are not unique

Example.
Suppose the original feature space is R”. The kernel function is

K(x,z)=(x-2)’ =x'z +2xx,2z, +X. 2

7/ canbe R and ¢ canbe ¢(x)=(x"V2xx,x)

1
7 can be R’and ¢ can be ¢(X)=—(xf—x§,2x1xz,x12+x22)

V2

7 canbe R*and ¢ canbe @(x)=(x7,xx,,%%,,%;)

Tongji University
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@@ Kernel function

« Commonly used kernel functions in the field of SVM

Polynomial kernel function:

K(x,z)=(x-z+1)"

Gaussian kernel function (radial basis function, RBF):

Tongji University
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Kernelized SVM

Linear SVM in high-dimensional space 7/ :

13T aw () ofs)-Sa

i=1 j=1

o = arg min {
subjectto C 2 ¢, 20,i=1,...,n
Zn: oy, =0
i=1
The classification decision function,
h. - (x)=sign (Z:: o yd(x)-(x,)+ b*j

where

b=y, San (§(3) 9(5)

with  the
kernel

function K

D>

Kernelized SVM:

1 n n
EZZ%%WJ-K(%XJ) 2.

i=1 j=I i=1

o =argmin
o
subjectto C 2 ¢, 20,i=1,...,n
Z )y, =
i=1
The classification decision function,

h. . (x)= sign(iafyil((x, Xi)+b*j

where
b =Yy, - ZayK( . J)

When the mapping function ¢:y — 77 implicitly represented by the kernel function K (-,-):R*XR? >R is
nonlinear, the kernelized SVM is a nonlinear model and is called nonlinear SVM
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Nonlinear SVM
LR P S R LB = S0

NGdE 7 = {(XnJ’f):| X, e[Ey;d’J_sr_ c {—l—l,—l}}n

i=1

BN A
(1) GRS (% B K RS Y28 C FEE SR ARDL AL il JL

a_argmm{zzfm K (x. )Z“}

i=l j=1

subjectto Cza;, 20,i=1,....n

n
2%y, =0
=1
LA r Ay s Y * * * % T
RN o = (0,013, e0;)
(2) M i Ao <al <, il
H

b* zyj_ (Z;}}iK(X?"Xj)

=1

(3)  WIGJRREL: h —s1gn(2a*1[{xx +b*]
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Nonlinear SVM

Example:

I . Tee TV |
I " LY Coa ]

d ¢ Q..;O; e®e
- o ® ° o .'tu&:::.:’ o8 |
° & e ° :. e °
I e .‘.00.:..:.. ° i
A T U
[} y ) s

L . o .... ° ]

A nonlinear classification problem

o
o 41
O  Support Vectors

-1.5 -1 -0.5 0 0.5 1 1.5 2 25

The curve is the decision boundary
obtained by using nonlinear SVM



e Linear separability and hyperplanes
e The perceptron learning algorithm
e Hard-margin SVM

e Soft-margin SVM

e Kernelized SVM

e Multi-class classification with SVM
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From binary classification to multi-class classification

e The previously mentioned SVM models are all designed for binary classification

« With proper extensions, binary classification models (not limited to SVM) can be
adapted to solve the multi-class classification problems

« Two commonly used strategies to extend a binary classification model to a multi-class
classification model, the one-versus-all approach and the one-versus-one approach

Tongji University
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One-versus-all

Suppose that we are solving a K-class classification task

Training stage
We need to train K binary classifiers 7,h,,...,/,

When training /4, (represented by the hyperplane (w,, b,)), taking training samples belonging to
kth-class as the positive training samples, and all the other ones as negative training samples

Testing stage
Given a test sample t
K
Compute t’s classification response with respect to all the K classifiers {Wl.Tt +bl}

i=1
t’s label = argmaxwf.t+bj

J

Tongji University
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A 4-class classification
problem

X X X X
X X X X
X X X
X
X X X
X X X X X
X X X
X N
X * %
X * * %
X * x
b 4 x L ] @)
X [ N N
X [ X
_
A X x
A A b 4 X X
A X x
A X
X X X
X X X X
X X X

train 4 binary classifiers

12

114
10

9 4

*

9

10 11 12

Decision boundaries for

the 4 classes
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One-versus-one

Suppose that we are solving a K-class classification task

Training stage
For each pair of two classes, i and j, i # j, train a binary classifier h,
Altogether, we can have K(K —1)/2 binary classifiers {h.

i }i, =l K i

Testing stage

Given a test sample t

Classify t using all the K(K-1)/2 binary classifiers {h and we can get K(K-1)/2 results,

y }i, =1, K i
C’:{rl,rz,...,rK(K_D/z} rell,2,....K}
Using the “voting” strategy to get the final label of t,

t’s label = The element with the most occurrences in
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A 4-class classification problem
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=

train 6 binary classifiers
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