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Linear separability
In one dimension, you can find a point separating the data 

In two dimensions, you can find a line 
separating the data 

In three dimensions, you can find a plane 
separating the data 
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Linear separability

Non-linearly separable data in 2D Non-linearly separable data in 3D 

Non-linearly separable data in 1D 

When data is non-linearly separable, we cannot find a separating point, line, or plane. 
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If data is linearly separable,  

for 1D case, we use a point (0D) to separate the data
for 2D case, we use a line (1D) to separate the data
for 3D case, we use a plane (2D) to separate the data

What do we use to separate the data when there are more than three dimensions?

Hyperplane!

Linear separability
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Hyperplane

Definition 1: Hyperplane
In geometry, a hyperplane is a subspace of one dimension less than its ambient space      

In d-D Euclidean space, a hyperplane is the set of points satisfying,
0b⋅ + =w x

where             is the point locating on that hyperplane, is the hyperplane’s normal 
vector, and b is a constant

d∈x  d∈w 

If not so straightforward, make an analogy with the cases of the line in 2D space 
and the plane in the 3D Euclidean space
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Hyperplane
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Classifying data with a hyperplane
Given a set of data points {xi} shown as the right figure and a 
hyperplane defined by w=(0.4, 1.0)T and b=-9
Suppose the classification model is hw,b:

which is equivalent to :

We can associate each xi with a label +1 or -1

( ),

1, 0
1, 0b

if b
h

if b
+ ⋅ + ≥

= − ⋅ + <
w

w x
x w x

( ) ( ), signbh b= ⋅ +w w xx

0.4*8 1.0*7 9 1.2 0b⋅ + = + − = >w x
Eg., x=(8,7)

, which is positive, so hw,b(x)=+1
It means x is above the hyperplane.

It uses the position of x with respect to the hyperplane to predict x’s label

(a linear classifier)
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Classifying data with a hyperplane

The main questions is, given a set of linearly separable data, how to find such 
a hyperplane that separates the data points? 

Next, we will at first introduce a simple algorithm to perform this task, i.e., perceptron 
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The perceptron learning algorithm
• The goal of the perceptron algorithm is to find a hyperplane that can separate a

linearly separable data set; once the hyperplane is found, it is used to perform
binary classification; thus, it is a linear binary classifier (by extension, such an
architecture can also perform multiclass classification)

• It was invented by Frank Rosenblatt in 1957[1]

[1] Rosenblatt, Frank (1957). "The Perceptron—a perceiving and recognizing automaton". Report 85-460-1.
Cornell Aeronautical Laboratory.

（a） （b）
弗兰克·罗森布拉特（Frank Rosenblatt，1928年7月11日-1971年7月11日）是美国心理学家，在人工智能领域享有盛誉。1971年，43岁生日那天，他在切萨皮克湾（Chesapeake Bay）
驾驶一艘名为Clearwater的单桅帆船时溺水身亡。由于他最早提出了感知器学习算法，而感知器模型现在被认为是神经网络的基础构件，因此也有文献认为他是“深度学习之父”；

（b）为了纪念Frank Rosenblatt，IEEE（电气电子工程师学会）从2004年开始设立了IEEE Frank Rosenblatt Award奖，用以表彰对生物和语言驱动的计算范式和系统做出杰出贡献的学者。
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The perceptron learning algorithm
The problem the perceptron algorithm wants to solve is,
Given a linearly separable training dataset                                                 , determine 
the hyperplane         ,                   ,

( ) { }{ } 1
, :| , 1, 1

nd
i i i i i
y y

=
= ∈ ∈ + −x x 

( ),bw ( ),i iy∀ ∈x  ( ) ( ), signb i i ih b y= ⋅ + =w x w x

Denote             and           , thenˆ
1
i

i
 

=  
 

x
x ˆ

b
 

=  
 

w
w ˆ ˆT T

i ib+ =w x w x

The hyperplane can then be represented by ŵ
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The perceptron learning algorithm

ŵ

ˆmx

ˆ ˆ ˆ: m my= +w w x

ŵ

ˆmx

ˆ ˆ ˆ: m my= +w w x

The updating rules for ŵ
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The perceptron learning algorithm
• The potential drawbacks of the perceptron learning algorithm

– Since the hyperplane is randomly initialized and the misclassified example is randomly selected
when updating the parameters, after running this algorithm several times, you may get several
different separating hyperplanes

– All of these different separating hyperplanes can correctly classify the training data, however,
they are not equally good!

Which hyperplane is the best?

Example:
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The perceptron learning algorithm

Given a linearly separable dataset, can we get the unique optimal 
separating hyperplane?

Hard-margin SVM

that comes
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弗拉基米尔·瓦普尼克(Vladimir N. Vapnik，1936年
12月6日-)，统计学家，因提出了支持向量机、VC
理论等而著名。他出生于前苏联。1958年，他在撒

马尔罕（现属乌兹别克斯坦）的乌兹别克国立大学
完成了硕士学业。1964年，他于莫斯科控制科学学

院获得博士学位。毕业后，他一直在该校工作直到
1990年，在此期间，他成为了该校计算机科学与研
究系的系主任。1990 年底，弗拉基米尔·瓦普尼克
移居美国，加入了位于新泽西州霍姆德尔的At&T
贝尔实验室的自适应系统研究部门。1995年，他被

伦敦大学聘为计算机与统计科学专业的教授。现在
，他工作于新泽西州普林斯顿的NEC实验室。他同
时是哥伦比亚大学的特聘教授。2006年，他成为美
国国家工程院院士。
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Redefine the separating hyperplane

For a linearly separable training dataset , we have already
know what is the separating hyperplane. If is the separating hyperplane, it
must satisfy,

( ) { }{ } 1
, :| , 1, 1

nd
i i i i i
y y

=
= ∈ ∈ + −x x 

0T b+ =w x

It needs to be noted that, the absolute magnitude of                       is not important for 
classification, since,

( ) ( ), , 0T
i i i iy y b∀ ∈  + >x w x

( )T
i iy b+w x

( ),bw ,0,
bρ

ρ ρ
 ∀ >  
 

w
represent the same hyperplane
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Redefine the separating hyperplane
For a separating hyperplane of , we re-parameterize it as( ),bw

where                                   . Then, for the separating hyperplane                     , we 
have,



( )/ , /bρ ρw

( )
1,...,

min T
i ii n
y bρ

=
= +w x ( )/ , /bρ ρw

( )
1,..., 1,...,

1min min 1
T

T
i i i ii n i n

by y b ρ
ρ ρ ρ ρ= =

   + = + = =     

w x w x

That is, for any separating hyperplane of      , it can be parameterized as (w, b) satisfying, 

( ) ( ), , 1T
i i i iy y b∀ ∈  + ≥x w x

Definition 2: Separating hyperplane. For a training dataset 
a hyperplane h is a separating hyperplane, if and only if it can be represented by (w, b)
satisfying,

( ) { }{ } 1
, :| , 1, 1

nd
i i i i i
y y

=
= ∈ ∈ + −x x 

( )
1,...,

min 1T
i ii n
y b

=
+ =w x
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Geometric margin
The geometric margin of a data point with respect to the hyperplane (w, b) can
tell us its distance to the hyperplane and can also indicate whether it is correctly
classified

( ),i iyx

o

𝐰

𝐱𝟎

𝐱𝑖
𝐱𝑖 − 𝐱𝟎di

The Euclidean distance from xi to the hyperplane,

( ) ( ) 00
0

T T T
i ii

i i

b
d

− +⋅ −
= ⋅ − = = =

w x w x w xw x xw x x
w w w w

Based on di, we can derive the formula of the
geometric margin of ( ),i iyx

( )T
i i

i

y b
γ

+
=

w x
w

Do you notice the difference between the Euclidean distance and
the geometric margin (from the data point to the hyperplane)?
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Geometric margin
Based on the geometric margins of the points, we can define the geometric margin of a
hyperplane

Definition 3: Geometric margin of a hyperplane. For a training dataset     , the 
geometric margin of a hyperplane                     is, 


0T b+ =w x

( ) ( )
1,2,.., 1,2,.., 1,2,..,

1min min min
T

i i T
i i ii n i n i n

y b
y bγ γ

= = =

+
= = = +

w x
w x

w w

Why do we think h3 is the best? It has the largest geometric margin!
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Hard-margin Support Vector Machine
For a linearly separable dataset , its optimal separating hyperplane (w*, b*) is the one
having the largest geometric margin, i.e.,



( )

( )

* *

1,2,..,, , ,

1,2,..,

1 1, argmax argmax min argmax

subject to min 1

T
i ii nb b b

T
i ii n

b y b

y b

γ
=

=

 
= = + =  

 

+ =

w w w
w w x

w w

w x

where the constraint indicates that the desired hyperplane at first should be a separating
hyperplane
The above problem can be reformulated as,

( )

* *

,

1, arg min
2

subject to 1, 1,...,

T

b

T
i i

b

y b i n

=

+ ≥  =
w

w w w

w x
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Hard-margin Support Vector Machine

Definition 4: Hard-margin SVM. Suppose that the training dataset is linearly
separable. The classification approach identifying the optimal separating hyperplane
by solving the following problem is called the hard-margin SVM,



( )

* *

,

1, arg min
2

subject to 1, 1,...,

T

b

T
i i

b

y b i n

=

+ ≥  =
w

w w w

w x

“Hard-margin” means that for every training sample, we require that its geometric
margin should be 1/≥ w

When we get the optimal separating hyperplane (w*, b*), if the sample (xk, yk) satisfies,

it is the supporting vector for the hyperplane (w*, b*)

( )* * 1T
k ky b+ =w x

(Eq. 1)
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Hard-margin Support Vector Machine
Proposition 1: The problem for solving the hard-margin SVM (Eq. 1) is a convex
quadratic program problem.

( )

* *

,

1, arg min
2

subject to 1, 1,...,

T

b

T
i i

b

y b i n

=

+ ≥  =
w

w w w

w x

Denote by . Then, ,b 
=  
 

u
w

1

1

0 dT T

d d dI
×

× ×

      
=    

0
w w u u

0
( ) ( )1 1T T
i i i i iy b y y− + + = −   − +w x x u

(Eq. 1)

Eq. 1 can be reformulated as,

( )

1*

1

01arg min
2

subject to 1 0, 1,...,

dT

d d d

T
i i i

I

y y i n

×

× ×

      
=    

−   − + ≤ =

u

0
u u u

0

x u
(Eq. 2)

According to Def. 13 in Lecture 9, Eq. 2 is a convex quadratic program problem
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Hard-margin Support Vector Machine

Example:
The ‘quadprog’ routine in matlab

Since the problem of hard-margin SVM is a convex quadratic program problem, it can
be solved by using standard packages for solving convex quadratic program problems

By exploring the special characteristics of
SVM, more efficient algorithms, based on
duality, have been designed
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Hard-margin SVM solver based on duality
The primal problem,

( )

* *

,

1, arg min
2

subject to 1 0, 1,...,

T

b

T
i i

b

y b i n

=

− + + ≤  =
w

w w w

w x
(Eq. 1)

Its Lagrangian (Def. 14 of Lecture 9) is,

( ) ( )( ) ( )
1 1 1

1 1, , 1
2 2

n n n
T T T T

i i i i i i i
i i i

l b y b y bα α α
= = =

= + − + + = − + +  w w w w x w w w xα

The dual problem (Def. 16 of Lecture 9) of Eq. 1 is,

( ){ }*

,
arg max min , ,

subject to 
b
l b=

        ≥
w

w

0
α

α α

α

(Eq. 3)

where ( )1 2, ,..., T
nα α α=α
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Hard-margin SVM solver based on duality

The primal problem of Eq. 1 is
a convex optimization problem
with all affine constraints

The domain of the
objective function is open

 is linearly separable

The primal problem of
Eq. 1 is feasible

( )* *,bw *αand are primal optimal and dual optimal, respectively

( )* *,bw *αand satisfy KKT conditions

Prop. 22 of Lect. 9

The primal problem of Eq. 1 is convex and has strong duality
Prop. 19 of Lect. 9

To solve Eq. 1, we can solve its dual
problem Eq. 3 first to get ; then,
by using the KKT equations, we
derive

*α

( )* *,bw
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Hard-margin SVM solver based on duality
First, solve the dual problem, Eq. 3, to get the dual optimal solution *α
(1) Compute ( )

,
min , ,

b
l b

w
w α

( ) ( )
1 1

1, ;
2

n n
T T

i i i i
i i

l b y bα α
= =

= − + + w w w w xα (about (w, b), it is a convex function)

Get its stationary point by solving,

1 1

1 1

0 0 0

n n

i i i i i i
i i

n n

i i i i
i i

l y y

l
y y

b

α α

α α

= =

= =

 ∂ − = ==    ∂    ∂  = − = =  ∂  

 

 

w x 0 w x0
w

( )
, 1 1 1 1 1

1 1 1 1 1

1min , ,
2

1
2

n n n n n

i i i j j j i i j j j i ib i j i j i

n n n n n

i i i j j j i i i j j j i i
i j i j i

l b y y y y b

y y y y b y

α α α α α

α α α α α

= = = = =

= = = = =

     = ⋅ − ⋅ + +             
                          = ⋅ − ⋅ − +    

     

    

    

w
w x x x x

x x x x

α

1 1 1 1

1
2

n n n n

i i j i j i j i
i i j i

y yα α α α
= = = =

= − ⋅ +  x x
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Hard-margin SVM solver based on duality
First, solve the dual problem, Eq. 3, to get the dual optimal solution *α
(2) Solve

*

1 1 1

1

1arg max ,
2

subject to 

0

n n n

i j i j i j i
i j i

n

i i
i

y y

y

α α α

α

= = =

=

 
= − ⋅ + 

 
        ≥

                        =

 



x x

0
α

α

α

*

1 1 1

1

1arg min ,
2

subject to 

0

n n n

i j i j i j i
i j i

n

i i
i

y y

y

α α α

α

= = =

=

 
= ⋅ − 

 
        − ≤

                        =

 



x x

0
α

α

α (Eq. 4)

For solving the specific optimization problem of Eq. 4, algorithms more efficient than standard packages for
solving the general convex quadratic program problems exist, such as the sequential minimal optimization, SMO

It is also a convex quadratic program problem!

(Eq. 5)
X =

1 1
Ty x

2 2
Ty x

      
T

n ny x

 
 
 
 
 
  

1 1 1 1 1 2 1 2 1 1

2 1 2 1 2 2 2 2 2

1 1 2 2

T T T
n n

T T T
T n n n

T T T
n n n n n n n n

y y y y y y
y y y y y y

Q XX

y y y y y y

  
 

  = =         
   

x x x x x x
x x x x x x

x x x x x x







Denote by ,
( )

1

*

2 1

1arg min ,
2

subject to 

n

T T

T

T
n

n n

Q

I

×

+ ×

×

 = − 
 

 
 

        − ≤ 
 − 

1

y
y 0

α
α α α α

α

(positive semi-definite)
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Hard-margin SVM solver based on duality
Second, with , based on KKT conditions, derive the primal optimal solution (w*, b*)*α
Proposition 2: Suppose that is the optimal solution for Eq. 3. There
exists an j, making , and (w*, b*) can be computed as,

( )* * * *
1 2, ,..., nα α α=α

* 0jα >
* *

1

n

i i i
i

yα
=

=w x ( )* *

1

n

i jj i i
i

b y yα
=

⋅= − x x(Eq. 6) (Eq. 7)
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Hard-margin SVM solver based on duality
Second, with , based on KKT conditions, derive the primal optimal solution (w*, b*)*α
Proposition 2: Suppose that is the optimal solution for Eq. 3. There
exists an j, making , and (w*, b*) can be computed as,

( )* * * *
1 2, ,..., nα α α=α

* 0jα >
* *

1

n

i i i
i

yα
=

=w x ( )* *

1

n

i jj i i
i

b y yα
=

⋅= − x x(Eq. 6) (Eq. 7)

With the optimal separating hyperplane (w*, b*), the classification decision function can
be,

( ) ( )* *
* *

,
1

sign
n

i i ib
i

h y bα
=

 = ⋅ + 
 
w x x x

Actually, only a few elements in α* are greater than 0. If , the associated feature vector of the training sample
(xi, yi) is a support vector to the hyperplane (w*, b*) since holds( )* * 1T

i iy b+ =w x
* 0iα >
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Hard-margin SVM
Example:

di
m
en
si
on
2 h1

h2

*

2
w
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From hard-margin SVM to soft-margin SVM
• When the training dataset is linearly separable, the hard-margin SVM can work

perfect
• However, when the training dataset is not linearly separable, the hard-margin SVM

does not work since the separating hyperplane does not exist, i.e., the following
optimization problem is not feasible,

( )

* *

,

1, arg min
2

subject to 1, 1,...,

T

b

T
i i

b

y b i n

=

+ ≥  =
w

w w w

w x
(Eq. 1)

How to deal with the dataset that is not linearly separable?

Let’s first consider a relatively simple case
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From hard-margin SVM to soft-margin SVM

The training dataset is not linearly separable; however, after
removing the outliers, the remaining points are linearly separable

( ) { }{ } 1
, :| , 1, 1

nd
i i i i i
y y

=
= ∈ ∈ + −x x 

di
m
en
si
on
2 These two points are outliers;

by removing them, the dataset
would be linearly separable

Can we deal with case by extending 
the hard-margin SVM?
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From hard-margin SVM to soft-margin SVM

The training dataset is not linearly separable; however, after
removing the outliers, the remaining points are linearly separable

( ) { }{ } 1
, :| , 1, 1

nd
i i i i i
y y

=
= ∈ ∈ + −x x 

( )

* *

,

1, arg min
2

subject to 1, 1,...,

T

b

T
i i

b

y b i n

=

+ ≥  =
w

w w w

w x
(Eq. 1)

Relax it to,
( )subject to 1 , 1,..., ,

0, 1,..., ,

T
i i i

i

y b i n

i n

ξ

ξ

+ ≥ −  =

                ≥  =

w x

For every hyperplane (w, b), for each training sample (xi, yi), making0,iξ∃ ≥

( ) 1T
i i iy b ξ+ ≥ −w x

satisfied. Of course, smaller are preferred, i.e., large need to be penalized{ }iξ { }iξ

These motivations suggest the following modified SVM model
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Soft-margin SVM

Definition 5: Soft-margin SVM. Suppose that the training dataset is nearly
linearly separable. The classification approach identifying the optimal separating
hyperplane by solving the following problem is called the soft-margin SVM,

(Eq. 8)



( )

* *

, , 1

1, arg min
2

subject to 1 , 1,...,

0, 1,...,

n
T

i
b i

T
i i i

i

b C

y b i n

i n

ξ

ξ

ξ

=

= +

+ ≥ − =

≥ =


w

w w w

w x
ξ

• By letting C = 0, , the soft-margin SVM model degenerates to the hard-margin one; the
soft-margin SVM of course can deal with the case when the training dataset is linearly separable; thus,
the soft-margin SVM “includes” the hard-margin SVM, i.e., the hard-margin SVM is a special case of
the soft-margin one

• The soft-margin SVM is a linear model since its decision boundary is a hyperplane; so, it is also called
linear SVM; it can deal with case when the training dataset is nearly linear separable

0, 1,...,i i nξ = =
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Soft-margin SVM solver based on duality
Proposition 3: The problem for solving the soft-margin SVM (Eq. 8) is a convex
quadratic program problem

For proof, refer to the textbook

Similar as the case of the hard-margin SVM, we can solve the soft-margin SVM
using the duality theory
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The primal problem,

Its Lagrangian (Def. 14 of Lecture 9) is,

( )( ) ( )( ) ( )
1 1 1

1, , , , 1
2

n n n
T T

i i i i i i i
i i i

l b C y bξ α ξ μ ξ
= = =

= + + − + − + + −  w w w w xξ α μ

The dual problem (Def. 14 of Lecture 9) of Eq. 8 is,

( )
( )( ){ }* *

, ,
, arg max min , , ,

subject to 
b
l b=

        ≥
                        ≥

w
w

0
0

ξα,μ
α μ ξ α, μ

α
μ

(Eq. 9)

(Eq. 8)( )

* *

, 1

1, arg min
2

subject to 1 , 1,...,

0, 1,...,

n
T

i
b i

T
i i i

i

b C

y b i n

i n

ξ

ξ

ξ

=

= +

+ ≥ − =

≥ =


w

w w w

w x

Soft-margin SVM solver based on duality
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To solve Eq. 8, we can solve its dual problem
Eq. 9 first to get ; then, by using the
KKT equations, we derive

( )* *,α μ
( )* * *, ,bw ξ

Soft-margin SVM solver based on duality
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First, solve the dual problem, Eq. 9, to get the dual optimal solution ( )* *α ,μ
(1) Compute

( )
( )( )

, ,
min , , ,
b
l b

w
w

ξ
ξ α, μ

( )( ) ( )( ) ( )
1 1 1

1, 1, ,
2

n n n
T T

i i i i i i i
i i i

l C y bb ξ α ξ μ ξ
= = =

= + + − + − + + −  w w w xw , α μξ (about , it is a convex function)

Get its stationary point by solving,

( )
( )( )

( )

, ,

1 1 1 1 1 1 1 1 1

1 1 1 1

min , , ,

1
2

1
2

b

n n n n n n n n n

i i i j j j i i i i j j j j j i i i i i
i j i i j j i i i

n n n

i i i j j j i i i i
i j i i

l b

y y C y y b y

y y C

α α ξ α α α α ξ α μ ξ

α α α α μ ξ

= = = = = = = = =

= = = =

=

      ⋅ + − ⋅ − − + −      
      

  = − ⋅ + + − −  
   

        

  

w
w

x x x x

x x

ξ
ξ α, μ

1 1 1

1
2

n n n n

i j i j i j i
i j i

y yα α α
= = =

= − ⋅ +  x x

( ), ,bw ξ

1

1 1

1

1 1

1

0 0 0

0 00

n n

i i i i i i
i i

n n

i i i i
i i

i i i i

i

l y y

l y y
b
l C C

α α

α α

α μ α μ
ξ

= =

= =

  ∂ − = ==  ∂  
 ∂ =  − =  =  ∂  

∂  − − = − − ==  ∂  

 

 

w x 0 w x0
w
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(2) Solve
* *

1 1 1

1

1, arg max
2

subject to 0, 1,...,
0, 1,...,

0

0, 1,.

n n n

i j i j i j i
i j i

i

i
n

i i
i

i i

y y

i n
i n

y

C i

α α α

α
μ

α

α μ

= = =

=

 
= − ⋅ + 

 
        ≥ =
                        ≥ =

                        =

                        − − = =

 



x x
α,μ

α μ

..,n

*

1 1 1

1

1arg min
2

subject to 0, 1,...,

0

n n n

i j i j i j i
i j i

i
n

i i
i

y y

C i n

y

α α α

α

α

= = =

=

 
= ⋅ − 

 
        ≥ ≥ =

                        =

 



x x
α

α

(Eq. 10)

Make a comparison between Eq. 10 and Eq. 4, they are quite similar; Eq. 10 can also be efficiently solved by
SMO

First, solve the dual problem, Eq. 9, to get the dual optimal solution ( )* *α ,μ

Soft-margin SVM solver based on duality
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Second, with , based on KKT conditions, derive the primal optimal solution( )* *,α μ

Proposition 4: Suppose that is the optimal solution for Eq. 9. If there
exists an j, making , then, (w*, b*) can be computed as,

( )* * * *
1 2, ,..., nα α α=α

*0 j Cα< <
* *

1

n

i i i
i

yα
=

=w x ( )* *

1

n

i jj i i
i

b y yα
=

⋅= − x x(Eq. 11) (Eq. 12)

( )* * *, ,bw ξ
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Second, with , based on KKT conditions, derive the primal optimal solution( )* *,α μ

Proposition 4: Suppose that is the optimal solution for Eq. 9. If there
exists an j, making , then, (w*, b*) can be computed as,

( )* * * *
1 2, ,..., nα α α=α

*0 j Cα< <
* *

1

n

i i i
i

yα
=

=w x ( )* *

1

n

i jj i i
i

b y yα
=

⋅= − x x(Eq. 11) (Eq. 12)

( )* * *, ,bw ξ

With the optimal separating hyperplane (w*, b*), the classification decision function can
be,

( ) ( )* *
* *

,
1

sign
n

i i ib
i

h y bα
=

 = ⋅ + 
 
w x x x

Soft-margin SVM solver based on duality
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Soft-margin SVM

( )* * * *
1 2, , ...,

T

nα α α=α
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The training sample (xi, yi) corresponding to is the support vector and it must satisfy

Soft-margin SVM
Example:

di
m
en
si
on
2

di
m
en
si
on
2

( )* * 1T
i i iy b ξ+ = −w x

* 0iα >
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Outline

• Linear separability and hyperplanes
• The perceptron learning algorithm
• Hard-margin SVM
• Soft-margin SVM
• Kernelized SVM
• Multi-class classification with SVM
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For nonlinear classification: Mapping from low dimensional space to a high dimensional one

• When the dataset is linearly separable or nearly linearly separable, linear SVM (soft-
margin SVM) can work well

• However, when the dataset is not nearly linearly separable, the performance of linear 
SVM will be poor

di
m
en
si
on
2

Consider a dataset of 2D points as the right figure. You
cannot find a proper “separating line” that can separate
the two classes of data
However, a dataset being not linearly separable in its
original space does not necessary mean that it is not
linearly separable when being mapped to another
high-dimensional space!
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For nonlinear classification: Mapping from low dimensional space to a high dimensional one

di
m
en
si
on
2

For example, using the following mapping ,2 3:φ → 

( ) ( )2 2
1 2 1 1 2 2, , 2 ,x x x x x xφ =

The mapped data in the high-dimensional space is now linearly separable!
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For nonlinear classification: Mapping from low dimensional space to a high dimensional one

Training stage
Given a training dataset which is not linearly separable( ) { }{ } 1

, :| , 1, 1
nd

i i i i i
y y

=
= ∈ ∈ + −x x 

Determine a mapping function φ
For each xi, map it as into a high-dimensional feature space 

From this example, we can formulate a general idea to solve non-linear classification problems with
SVM:

( )iφ x
In , train a linear SVM model using as the training data ( ){ } 1

,
n

i i i
yφ

=
x

Testing stage
Given a test sample t, which is expressed in the original low-dimensional space

Map t into as ( )φ t
Classify using 



( )φ t

How to determine for a given dataset does not have a fixed correct answer, and it may depend on experience!φ
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For nonlinear classification: Mapping from low dimensional space to a high dimensional  one

Linear SVM:

*

1 1 1

1

1arg min
2

subject to 0, 1,...,

0

n n n

i j i j i j i
i j i

i
n

i i
i

y y

C i n

y

α α α

α

α

= = =

=

 
= ⋅ − 

 
        ≥ ≥ =

                        =

 



x x
α

α

( ) ( )* *
* *

,
1

sign
n

i i ib
i

h y bα
=

 = ⋅ + 
 
w x x x

The classification decision function,

( )* *

1

n

i jj i i
i

b y yα
=

⋅= − x x
where

Linear SVM in high-dimensional space :

( ) ( )*

1 1 1

1

1arg min
2

subject to 0, 1,...,

0

n n n

i j i j i j i
i j i

i
n

i i
i

y y

C i n

y

α α φ φ α

α

α

= = =

=

 
= ⋅ − 

 
        ≥ ≥ =

                        =

 



x x
α

α

( ) ( ) ( )* *
* *

,
1

sign
n

i i ib
i

h y bα φ φ
=

 = ⋅ + 
 
w x x x

The classification decision function,

( ) ( )( )* *

1

n

jj i i i
i

b y yα φ φ
=

= − ⋅ xx
where



mapping data into
by using 


φ

When data is not 
linearly separable, 

Is there a function that can implicitly return the dot 
product of two points in the high-dimensional space?
That is the kernel function!

① Using , mapping data points to
② Computing the dot product between two

mapped points

φ
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Kernel function

Definition 6: Kernel function. Suppose that is the original low-dimensional feature
space and is the high-dimensional feature space. If there exists a mapping,

, the function satisfies that,

χ

( ) :φ χ →x 


, χ∀ ∈x z
( ) ( ) ( ),K φ φ= ⋅x z x z

Then, the function is called the kernel function

( ) :, d dK × →⋅ ⋅   

( ),K ⋅ ⋅

With the kernel function, we do not need to explicitly define the mapping function and the high-
dimensional space!
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Kernel function
• It needs to be noted that for a given kernel function K, the associated high-

dimensional space and the mapping function are not unique φ

Example.
Suppose the original feature space is . The kernel function is2

( ) ( )2 2 2 2 2
1 1 1 2 1 2 2 22,K x z x x z z x z= = + +⋅x z x z

( ) ( )2 2
1 1 2 2, 2 ,x x x xφ =xcan be and can be3 φ

can be and can be3 φ ( ) ( )2 2 2 2
1 2 1 2 1 2

1 , 2 ,
2
x x x x x xφ = − +x

can be and can be4 φ ( ) ( )2 2
1 1 2 1 2 2, , ,x x x x x xφ =x
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Kernel function
• Commonly used kernel functions in the field of SVM

Polynomial kernel function:

( ) ( ), 1 pK = ⋅ +x z x z

Gaussian kernel function (radial basis function, RBF):

( )
2
2

2, exp
2

K
σ

 −= − 
 

x zx z
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Kernelized SVM
Linear SVM in high-dimensional space :

( ) ( )*

1 1 1

1

1arg min
2

subject to 0, 1,...,

0

n n n

i j i j i j i
i j i

i
n

i i
i

y y

C i n

y

α α φ φ α

α

α

= = =

=

 
= ⋅ − 

 
        ≥ ≥ =

                        =

 



x x
α

α

( ) ( ) ( )* *
* *

,
1

sign
n

i i ib
i

h y bα φ φ
=

 = ⋅ + 
 
w x x x

The classification decision function,

( ) ( )( )* *

1

n

jj i i i
i

b y yα φ φ
=

= − ⋅ xx
where

 Kernelized SVM:

( )*

1 1 1

1

1 ,arg min
2

subject to 0, 1,...,

0

n n n

i ji j i j i
i j i

i
n

i i
i

y y K

C i n

y

α α α

α

α

= = =

=

 
= − 

 
        ≥ ≥ =

                        =

 



x x
α

α

( ) ( )* *
* *

,
1

sign ,
n

i i ib
i

h y K bα
=

 = + 
 
w x x x

The classification decision function,

( )* *

1

,
n

i jj i i
i

b y y Kα
=

= − x x
where

with the
kernel
function K

When the mapping function implicitly represented by the kernel function is
nonlinear, the kernelized SVM is a nonlinear model and is called nonlinear SVM

:φ χ → ( ) :, d dK × →⋅ ⋅   
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Nonlinear SVM

( )* * * *
1 2, , ...,

T

nα α α=α
*0 j Cα< <
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Example:

Nonlinear SVM

A nonlinear classification problem The curve is the decision boundary
obtained by using nonlinear SVM
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Outline

• Linear separability and hyperplanes
• The perceptron learning algorithm
• Hard-margin SVM
• Soft-margin SVM
• Kernelized SVM
• Multi-class classification with SVM
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From binary classification to multi-class classification
• The previously mentioned SVM models are all designed for binary classification
• With proper extensions, binary classification models (not limited to SVM) can be

adapted to solve the multi-class classification problems
• Two commonly used strategies to extend a binary classification model to a multi-class

classification model, the one-versus-all approach and the one-versus-one approach
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One-versus-all
Suppose that we are solving a K-class classification task

Training stage
We need to train K binary classifiers

When training hk (represented by the hyperplane (wk, bk)), taking training samples belonging to
kth-class as the positive training samples, and all the other ones as negative training samples

Testing stage
Given a test sample t
Compute t’s classification response with respect to all the K classifiers
t’s label =

1 2, ,..., Kh h h

{ } 1

KT
i i ib =

+w t
argmax T

j j
j

b+w t
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One-versus-all: A toy example

A 4-class classification
problem

train 4 binary classifiers

Decision boundaries for
the 4 classes
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One-versus-one
Suppose that we are solving a K-class classification task

Training stage
For each pair of two classes, i and j, , train a binary classifier

Testing stage
Given a test sample t
Classify t using all the K(K-1)/2 binary classifiers and we can get K(K-1)/2 results,

Using the “voting” strategy to get the final label of t,

Altogether, we can have binary classifiers( ) / 21K K −

( ){ } { }1 2 /21, ,..., , 1,2,...,K iKr r r r K−= ∈

i j≠ ijh
{ } , 1,..., ,ij i j K i j
h

= ≠

{ } , 1,..., ,ij i j K i j
h

= ≠

t’s label = The element with the most occurrences in 
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One-versus-one: A toy example

A 4-class classification problem

train 6 binary classifiers
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